準地衡流近似 1 地衝流バランス 1

準地衡流近似

竹広 真一

2016/01/13

ほとんど地衡流バランスしている流れの時間変化を近似的に表現する方程式系を 導く.

1 地衝流バランス

粘性のない回転系の運動方程式は,次のとおりである.

$$\left(\frac{\partial}{\partial t} + \boldsymbol{v} \cdot \nabla\right) \boldsymbol{v} + 2\boldsymbol{\Omega} \times \boldsymbol{v} = -\frac{1}{\rho} \nabla p - \nabla \Phi. \tag{1}$$

コリオリ加速度 $2\Omega imes oldsymbol{v}$ に比べて慣性項 $\dfrac{doldsymbol{v}}{dt}$ が十分小さいときには次の式が近似的に成り立つ.

$$2\mathbf{\Omega} \times \mathbf{v} = -\frac{1}{\rho} \nabla p - \nabla \Phi. \tag{2}$$

これが一般的な地衡流を表す式である.

特に , ポテンシャル Φ が球対称であるとき , (2) を球座標系で書き下すとつぎのようになる.

$$-2\Omega \sin \theta \cdot v + 2\Omega \cos \theta \cdot u = -\frac{1}{\rho r \cos \theta} \frac{\partial p}{\partial \psi}, \tag{3}$$

$$2\Omega \sin \theta \cdot u = -\frac{1}{\rho r} \frac{\partial p}{\partial \theta}, \tag{4}$$

$$-2\Omega\cos\theta\cdot u = -\frac{1}{\rho}\frac{\partial p}{\partial r} - g. \tag{5}$$

準地衡流近似 2 Scaling 2

ただし $g=rac{\partial\Phi}{\partial r}$ である.

2 Scaling

ここで注目する運動の形態を羅列する.

- 1. 半径 r_0 の球面上の流体.
- 2. 緯度 θ_0 を中心とする中緯度での運動を考える. 運動の水平スケールを L とするとき

$$\frac{L}{r_0} \ll 1$$

3. 運動の鉛直スケールを D とするとき

$$\delta \equiv \frac{D}{L} \ll 1$$

4. 流れはほぼ地衡流バランスしている.

各物理量を次のように無次元化する.

$$r - r_0 = D\tilde{z}, \quad t = T\tilde{t},$$

 $(u, v) = U(\tilde{u}, \tilde{v}), \quad w = U\frac{D}{L}\tilde{w}.$

 \tilde{c} は無次元量であることを表わす.次に p,ρ のスケーリングを行なう. p,ρ を運動がないときの圧力,密度 $p_s(z),\rho_s(z)$ とそれからのずれ p^*,ρ^* で表わす.

$$p = p_s(z) + p^*(x, y, z, t), \tag{6}$$

$$\rho = \rho_s(z) + \rho^*(x, y, z, t), \tag{7}$$

ただし p_s, ρ_s は静力学平衡の式を満たすものとする.

$$\frac{\partial p_s}{\partial z} = -\rho_s g.$$

 p^*, ρ^* の適当なスケーリングを調べるために , 地衡風バランスの式を調べる. 水平方向のバランスから

$$-2\Omega \sin \theta \cdot v + 2\Omega \cos \theta \cdot u = -\frac{1}{\rho r \cos \theta} \frac{\partial p}{\partial \phi}$$

$$2\Omega U \qquad 2\Omega \frac{D}{L} U \qquad \frac{p^*}{\rho_s L}$$

$$2\Omega \sin \theta \cdot u \qquad = -\frac{1}{\rho r} \frac{\partial p}{\partial \theta}$$

$$2\Omega U \qquad p^* \rho_s L$$

したがって $p^* \sim O(fU\rho_sL)$ である. ただし $f \equiv 2\Omega$ はコリオリパラメターである.

次に鉛直方向のバランスから

$$-2\Omega\cos\theta\cdot(\rho_s+\rho^*) = -\frac{\partial p^*}{\partial z} - \rho^*g$$

$$fU\rho_s \qquad \frac{fU\rho_sL}{D} \quad \rho^*g$$

$$1$$

 $\delta \ll 1$ の仮定から右辺は無視できる. したがって ρ^* のスケーリングは

$$\rho^* \sim O\left(\frac{fUL}{gD}\rho_s\right) \sim O(\varepsilon F \rho_s)$$

ただし ε は Rossby 数,F は Rossby 変形半径 $R_d \equiv \frac{gD}{f^2}$ と運動の水平スケールとの比である.

$$\varepsilon \equiv \frac{L}{fU} = \frac{L}{2\Omega U \sin \theta},$$

$$F \equiv \frac{f^2 L^2}{aD}.$$

以上の結果から p, ρ を次のようにスケーリングする.

$$p = p_s(z) + fUL\rho_s\tilde{\rho},$$

$$\rho = \rho_s + \varepsilon F\rho_s(z)\tilde{\rho}.$$

3 球座標系の運動方程式・連続の式

$$\frac{d\rho}{dt} + \rho \left\{ \frac{\partial w}{\partial r} + \frac{2w}{r} + \frac{1}{r\cos\theta} \frac{\partial(v\cos\theta)}{\partial\theta} + \frac{1}{r\cos\theta} \frac{\partial u}{\partial\phi} \right\} = 0, \tag{8}$$

$$\frac{du}{dt} + \frac{uw}{r} - \frac{uv}{r}\tan\theta - 2\Omega v\sin\theta + 2\Omega w\cos\theta = -\frac{1}{\rho r\cos\theta}\frac{\partial p}{\partial \phi},\tag{9}$$

$$\frac{dv}{dt} + \frac{wv}{r} + \frac{u^2}{r}\tan\theta + 2\Omega u\sin\theta = -\frac{1}{\rho r}\frac{\partial p}{\partial \theta},\tag{10}$$

$$\frac{dw}{dt} - \frac{u^2 + v^2}{r} - 2\Omega u \cos \theta = -\frac{1}{\rho} \frac{\partial p}{\partial r} - g, \tag{11}$$

ただし

$$\frac{d}{dt} \equiv \frac{\partial}{\partial t} + \frac{u}{r\cos\theta} \frac{\partial}{\partial \phi} + \frac{v}{r} \frac{\partial}{\partial \theta} + w \frac{\partial}{\partial r}.$$

である. これらを次のように無次元化する.

$$\begin{split} t &= T\tilde{t}, \\ (u,v) &= U(\tilde{u},\tilde{v}), \quad w = U\delta\tilde{w}, \\ r &= r_0\tilde{r} = r_0\left(1 + \frac{L}{r_0}\delta z\right), \quad (d\phi,d\theta) = \frac{L}{r_0}(d\tilde{\phi},d\tilde{\theta}), \\ p &= p_s(z) + f_0UL\rho_s(z)\tilde{p}, \quad \rho = \rho_s(z)\{1 + \varepsilon F\tilde{\rho}\}. \end{split}$$

$$\varepsilon F \frac{d\rho}{dt} + \varepsilon w \frac{1}{\rho_s} \frac{d\rho_s}{dz} (1 + \varepsilon F \rho)
+ \varepsilon (1 + \varepsilon F \rho) \left\{ \frac{\partial w}{\partial z} + \delta \frac{L}{r_0} \frac{2w}{r} + \frac{L}{r_0 r \cos \theta} \frac{\partial (v \cos \theta)}{\partial \theta} + \frac{L}{r_0 r \cos \theta} \frac{\partial u}{\partial \phi} \right\} = 0, (12)
\frac{du}{dt} + \varepsilon \frac{L}{r_0} \left(\delta \frac{uw}{r} - \frac{uv}{r} \tan \theta \right) - v \frac{\sin \theta}{\sin \theta_0} + \delta w \frac{\cos \theta}{\sin \theta_0} = -\frac{L}{r_0 r (1 + \varepsilon F \rho) \cos \theta} \frac{\partial \rho}{\partial \phi} (12)
\frac{dv}{dt} + \varepsilon \frac{L}{r_0} \left(\delta \frac{wv}{r} + \frac{u^2}{r} \tan \theta \right) + u \frac{\sin \theta}{\sin \theta_0} = -\frac{L}{r_0 r (1 + \varepsilon F \rho)} \frac{\partial \rho}{\partial \theta} (14)
(1 + \varepsilon F \rho) \left\{ \delta \frac{dw}{dt} - \varepsilon \frac{L}{r_0} \frac{u^2 + v^2}{r} - u \frac{\cos \theta}{\sin \theta_0} \right\} = -\frac{1}{\delta \rho_s} \frac{\partial}{\partial z} (\rho_s \rho) - \frac{1}{\delta} \rho, \tag{15}$$

ただし

$$\frac{d}{dt} \equiv \varepsilon_T \frac{\partial}{\partial t} + \varepsilon \left\{ \frac{L}{r_0} \frac{u}{r \cos \theta} \frac{\partial}{\partial \phi} + \frac{L}{r_0} \frac{v}{r} \frac{\partial}{\partial \theta} + w \frac{\partial}{\partial z} \right\}$$

である.

さらに $\sin \theta$, $\cos \theta$, $\tan \theta$ を θ ₀ において展開する.

$$\sin \theta = \sin(\theta - \theta_0) \cos \theta_0 + \cos(\theta - \theta_0) \sin \theta_0$$

$$\sim \frac{L}{r_0} y \cos \theta_0 + \sin \theta_0 \left\{ 1 - \frac{1}{2} \left(\frac{L}{r_0} \right)^2 y^2 + \cdots \right\},$$

$$\cos \theta = \cos(\theta - \theta_0) \cos \theta_0 - \sin(\theta - \theta_0) \sin \theta_0$$

$$\sim \cos \theta_0 \left\{ 1 - \frac{1}{2} \left(\frac{L}{r_0} \right)^2 y^2 + \cdots \right\} - \sin \theta_0 \left\{ \frac{L}{r_0} y + \cdots \right\},$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$= \frac{\frac{L}{r_0} y \cos \theta_0 + \sin \theta_0 \left\{ 1 - \frac{1}{2} \left(\frac{L}{r_0} \right)^2 y^2 + \cdots \right\}}{\cos \theta_0 \left\{ 1 - \frac{1}{2} \left(\frac{L}{r_0} \right)^2 y^2 + \cdots \right\}}$$

$$= \frac{1}{\cos \theta_0} \left[\frac{L}{r_0} y \cos \theta_0 + \sin \theta_0 \left\{ 1 - \frac{1}{2} \left(\frac{L}{r_0} \right)^2 y^2 + \cdots \right\} \right]$$

$$\times \left[1 - \left\{ -\frac{1}{2} \left(\frac{L}{r_0} \right)^2 y^2 - \tan \theta_0 \frac{L}{r_0} y + \cdots \right\} \right]$$

$$= \tan \theta_0 + \frac{L}{r_0} y \tan \theta_0 \cdot \sin \theta_0 + \cos \theta_0 \frac{1}{\cos \theta_0}$$

$$+ \left(\frac{L}{r_0} \right) y^2 \frac{1}{\cos \theta} \left\{ \frac{1}{2} \sin \theta_0 - \frac{1}{2} \sin \theta_0 + \cos \theta_0 \cdot \tan \theta_0 \right\}$$

$$= \tan \theta_0 + \frac{1}{\cos^2 \theta_0} \frac{L}{r_0} y + \tan \theta_0 \left(\frac{L}{r_0} \right)^2 y^2 + \cdots$$

これらを (12) ~ (15) に代入する. さらに各物理量を ε で展開し , 各 order でまとめる.

$$u = u^{(0)} + \varepsilon u^{(1)} + \cdots$$

$$r = 1 + \delta \frac{L}{r_0} z$$

また , $F \sim O(\varepsilon)$ とする.

4 局所直交座標系

いま考える運動は , 緯度 θ_0 (中緯度) を中心とする水平スケール $L \ll r_0$ であった. そこで , 緯度 θ 経度 ϕ を $\theta=\theta_0,\phi=0$ において展開して表現する.

$$X = \frac{r_0}{L}\phi\cos\theta_0,$$

$$y = \frac{r_0}{L}(\theta - \theta_0)$$

これより ϕ, θ での微分は

$$\frac{\partial}{\partial \phi} = \frac{r_0}{L} \cdot \theta_0 \frac{\partial}{\partial x},$$
$$\frac{\partial}{\partial \theta} = \frac{r_0}{L} \frac{\partial}{\partial y}.$$

(12)~(15) は次のようになる.

$$\varepsilon^{2}F\frac{d\rho}{dt} + \varepsilon w(1 + \varepsilon F\rho)\frac{1}{\rho_{s}}\frac{d\rho_{s}}{dz}
+ \varepsilon(1 + \varepsilon F\rho)\left\{\frac{\partial w}{\partial z} + \delta\frac{L}{r_{0}}\frac{2w}{r} - \frac{L}{r_{0}}\frac{v\tan\theta}{r} + \frac{1}{r}\frac{\partial v}{\partial y} + \frac{\cos\theta_{0}}{r\cos\theta}\frac{\partial u}{\partial x}\right\} = 0, \quad (16)$$

$$\varepsilon\frac{du}{dt} + \varepsilon\frac{L}{r_{0}}\left(\delta\frac{uw}{r} - \frac{uv}{r}\tan\theta\right) - v\frac{\sin\theta}{\sin\theta_{0}} + \delta w\frac{\cos\theta}{\sin\theta_{0}} = -\frac{\cos\theta_{0}}{r(1 + \varepsilon F\rho)\cos\theta}\frac{\partial p}{\partial x}, \quad (18)$$

$$\varepsilon\frac{dv}{dt} + \varepsilon\frac{L}{r_{0}}\left(\delta\frac{wv}{r} + \frac{u^{2}}{r}\tan\theta\right) + u\frac{\sin\theta}{\sin\theta_{0}} = -\frac{1}{r(1 + \varepsilon F\rho)}\frac{\partial p}{\partial y}, \quad (18)$$

$$(1 + \varepsilon F\rho)\left\{\delta\varepsilon\frac{dw}{dt} - \varepsilon\frac{L}{r_{0}}\frac{u^{2} + v^{2}}{r} - u\frac{\cos\theta}{\sin\theta_{0}}\right\} = -\frac{1}{\delta\rho_{s}}\frac{\partial}{\partial z}(\rho_{s}p) - \frac{1}{\delta}\rho, \quad (19)$$

ただし

$$\frac{d}{dt} \equiv \frac{\varepsilon_T}{\varepsilon} \frac{\partial}{\partial t} + \left\{ \frac{u \cos \theta_0}{r \cos \theta} \frac{\partial}{\partial x} + \frac{v}{r} \frac{\partial}{\partial y} + w \frac{\partial}{\partial z} \right\}$$

である.

 $O(\varepsilon^0)$ より

$$\frac{\partial u^{(0)}}{\partial x} + \frac{\partial v^{(0)}}{\partial y} + \frac{w^{(0)}}{\rho_s} \frac{d\rho_s}{dz} + \frac{\partial w^{(0)}}{\partial z} = 0, \tag{20}$$

$$-v^{(0)} = -\frac{\partial p^{(0)}}{\partial x}, \tag{21}$$

$$u^{(0)} = -\frac{\partial p^{(0)}}{\partial y}, \tag{22}$$

$$-\frac{1}{\rho_s}\frac{\partial}{\partial z}(\rho_s p^{(0)}) - \rho^{(0)} = 0.$$
 (23)

(21),(22)より

$$\frac{\partial u^{(0)}}{\partial x} + \frac{\partial v^{(0)}}{\partial y} = 0.$$

これを (20) に代入して

$$\frac{\partial}{\partial z}(\rho_s w^{(0)}) = 0.$$

ここで $z={
m const.}$ なる境界面があると仮定する. その表面で w=0 でなければならない 1 . よって

$$w^{(0)} = 0$$

(21), (22) は直交座標系における地衡風バランスの式, (23) は静水圧の式である.

 $O(\varepsilon^1)$ より

$$\frac{\partial u^{(1)}}{\partial x} + \frac{\partial v^{(1)}}{\partial y} + \frac{1}{\rho_s} \frac{\partial}{\partial z} (\rho_s w^{(1)}) - \frac{L}{\varepsilon r_0} v^{(0)} \tan \theta_0 + \tan \theta_0 \frac{L}{\varepsilon r_0} y \frac{\partial u^{(0)}}{\partial x} = 0, \tag{24}$$

$$\frac{\varepsilon_T}{\varepsilon} \frac{\partial u^{(0)}}{\partial t} + u^{(0)} \frac{\partial u^{(0)}}{\partial x} + v^{(0)} \frac{\partial u^{(0)}}{\partial y} - v^{(1)} - v^{(0)} \cot \theta_0 \frac{L}{\varepsilon r_0} y = -\frac{\partial p^{(1)}}{\partial x} - \frac{L}{\varepsilon r_0} y \tan \theta_0 \frac{\partial p^{(0)}}{\partial z^{(25)}}$$

$$\frac{\varepsilon_T}{\varepsilon} \frac{\partial u^{(0)}}{\partial t} + u^{(0)} \frac{\partial v^{(0)}}{\partial x} + v^{(0)} \frac{\partial v^{(0)}}{\partial y} + u^{(1)} + u^{(0)} \cot \theta_0 \frac{L}{\varepsilon r_0} y = -\frac{\partial p^{(1)}}{\partial x}, \tag{26}$$

$$-u^{(0)} \tan \theta_0 = -\frac{1}{\rho_0} \frac{\partial}{\partial z} (p^{(1)} \rho_s) - \rho^{(1)}.$$

$$-\frac{\partial}{\partial y} \times (25) + \frac{\partial}{\partial x} \times (26)$$
 より

$$\frac{d_0 \zeta^{(0)}}{dt} + \frac{\partial u^{(1)}}{\partial x} + \frac{\partial v^{(1)}}{\partial y} + \frac{L}{\varepsilon r_0} \cot \theta_0 \cdot v^{(0)} + \frac{L}{\varepsilon r_0} y \cot \theta_0 \left(\frac{\partial u^{(0)}}{\partial x} + \frac{\partial v^{(0)}}{\partial y} \right) \\
= \frac{L}{\varepsilon r_0} \tan \theta_0 \frac{\partial p^{(0)}}{\partial x} + \frac{L}{\varepsilon r_0} y \tan \theta_0 \frac{\partial^2 p^{(0)}}{\partial x \partial y}.$$

ただし

$$\frac{d_0}{dt} \equiv \frac{\varepsilon_T}{\varepsilon} \frac{\partial}{\partial t} + u^{(0)} \frac{\partial}{\partial x} + v^{(0)} \frac{\partial}{\partial y},$$

$$\zeta_0 \equiv \frac{\partial v^{(0)}}{\partial x} - \frac{\partial u^{(0)}}{\partial y} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) p^{(0)},$$

である. (24) を用いてさらに変型すると

$$\frac{d\zeta^{(0)}}{dt} + \beta v^{(0)} = \frac{1}{\rho_s} \frac{\partial}{\partial z} (\rho_s w^{(1)})$$
(28)

となる. $\beta \equiv \frac{L}{\varepsilon r_0} \cot \theta_0$ である.

 $^{^1}$ ここでは境界条件として w=0 at $z={
m const.}$ を与えた. しかし w として,粘性境界層の上部での値を用いることも行なわれる(例えば ${
m Ekman\ Layer}$ の解を用いる). このときは改めて境界条件を考慮して方程式を構成し直す必要がある.

準地衡流近似 5 熱力学の式 8

5 熱力学の式

 $arepsilon^1$ の鉛直速度 $w^{(1)}$ を見積もるために熱力学の式を用いる. ここで使う式は断熱の式

$$\frac{ds}{dt} = 0, (29)$$

である. 理想気体の場合はポテンシャル温度 $\theta\equiv T\left(\frac{p_0}{p}\right)^{\frac{R}{C_p}}=\frac{p_0}{\rho R}\left(\frac{p_0}{p}\right)^{\frac{R}{C_p}}$ で書き直すことができる.

$$\frac{d\theta}{dt} = 0, (30)$$

 p_0 は標準となる圧力で一定である.

さて, 先にスケーリングした p, ρ を用いて θ を表わす.

$$\ln \theta = \frac{1}{\gamma} \ln p - \ln \rho + \text{const.}$$

これに $p=p_s(z)+f_0UL\rho_s(z)\tilde{p},~~
ho=
ho_s(z)\{1+arepsilon F ilde{
ho}\}$ を代入すると

$$\ln \theta = \frac{1}{\gamma} \ln \left\{ p_s \left(1 + \frac{f_0 U L \rho_s}{p_s} \tilde{p} \right) \right\} - \ln \left\{ \rho_s (1 + \varepsilon F \tilde{\rho}) \right\} + \text{const.}$$

$$= \frac{1}{\gamma} \ln p_s(z) - \ln \rho_s(z) + \text{const.}$$

$$+ \frac{1}{\gamma} \ln \left(1 + \varepsilon \frac{f_0^2 L^2 \rho_s}{p_s} \tilde{p} \right) - \ln (1 + \varepsilon F \tilde{\rho})$$

$$\sim \frac{1}{\gamma} \ln p_s(z) - \ln \rho_s(z) + \text{const.}$$

$$\varepsilon \frac{1}{\gamma} \frac{f_0^2 L^2 \rho_s}{p_s} \tilde{p} - \varepsilon F \tilde{\rho} + O(\varepsilon^2 F)$$

ただし ε は微小として $\ln(1+\varepsilon x)\sim \varepsilon x-\frac{1}{2}\varepsilon^2 x^2+\cdots$ と展開した. そこで θ を次のように表わすことにする.

$$\theta = \theta_s(z)\{1 + \varepsilon F\tilde{\theta}(x, y, z, t)\}.$$

ただし $\theta_s(z) \equiv \frac{1}{\gamma} \ln p_s - \ln \rho_s + \text{const.}$ である.

 $\tilde{\theta} = \theta^{(0)} + \varepsilon \theta^{(1)} + \varepsilon \theta^{(2)} + \cdots$ と展開すると

$$\varepsilon F(\theta^{(0)} + \varepsilon \theta^{(1)} + \cdots) \sim \frac{1}{\gamma} \varepsilon \frac{f_0^2 L^2 \rho_s}{p_s} (p^{(0)} + \varepsilon p^{(1)} + \cdots) - \varepsilon F(\rho^{(0)} + \varepsilon \rho^{(1)} + \cdots)$$

 $O(\varepsilon^1)$ からは

$$\theta^{(0)} = \frac{1}{\gamma F} \frac{f_0^2 L^2 \rho_s}{p_s} - \rho^{(0)} = \frac{1}{\gamma} \frac{gD}{p_s} \rho_s - p^{(0)} - \rho^{(0)}$$

 $p^{(0)}$ と $\rho^{(0)}$ の関係, p_s と ρ_s の関係を用いると

$$\theta^{(0)} = \frac{1}{\gamma} \frac{gD}{p_s} \left(-\frac{1}{gD} \frac{\partial p_s}{\partial z} \right) p^{(0)} + \frac{1}{\rho_s} \frac{\partial}{\partial z} (\rho_s p^{(0)})$$

$$= p^{(0)} \left(\frac{\partial}{\partial z} \ln \rho_s - \frac{1}{\gamma} \frac{\partial}{\partial z} \ln p_s \right) + \frac{\partial p^{(0)}}{\partial z}$$

$$= \frac{1}{\theta^{(0)}} \frac{\partial \theta_s}{\partial z} p^{(0)} - \frac{\partial p^{(0)}}{\partial z}.$$

ここで重要な仮定

$$\frac{1}{\theta_s} \frac{\partial \theta_s}{\partial z} = O(\varepsilon).$$

を導入する. これより $heta^{(0)}$ と $p^{(0)}$ の関係は次のような簡単な式で表わされる.

$$\theta^{(0)} = \frac{\partial p^{(0)}}{\partial z}.\tag{31}$$

断熱の式 $\frac{d\theta}{dt}=0$ に戻ろう. θ の表現を代入して ε の各 order でまとめると $O(\varepsilon)$ の式より

$$\varepsilon F \theta_s \frac{d\theta^{(0)}}{dt} + \varepsilon w^{(1)} \frac{\partial \theta_s}{\partial z} = 0.$$

よって

$$\frac{d\theta^{(0)}}{dt} + S(z)w^{(1)} = 0, (32)$$

ただし $S(z)\equiv \frac{1}{F\theta_s}\frac{\partial \theta_s}{\partial z}$ である. $S(z)\sim O(\varepsilon)$ であることを仮定した.

6 準地衡風ポテンシャル渦度保存則

(32) を 渦度方程式 (28) に代入する. (28) の右辺は

$$\frac{1}{\rho_s} \frac{\partial}{\partial z} (\rho_s w^{(1)}) = \frac{1}{\rho_s} \frac{\partial}{\partial z} \left\{ \rho_s \left(-\frac{1}{S} \frac{d\theta^{(0)}}{dt} \right) \right\}
= -\frac{d}{dt} \left\{ \frac{1}{\rho_s} \frac{\partial}{\partial z} \left(\frac{\rho_s}{S} \theta^{(0)} \right) \right\} + \frac{1}{S} \left(\frac{\partial \theta^{(0)}}{\partial x} \frac{\partial u}{\partial z} + \frac{\partial \theta^{(0)}}{\partial y} \frac{\partial v}{\partial z} \right).$$

準地衡流近似 文献 10

ここで (31) 式と地衡風バランス (21),(22) を用いると , 右辺第 2 項は 0 になる. よって (28) は

$$\frac{d}{dt} \left\{ \zeta^{(0)} + \frac{1}{\rho_s} \frac{\partial}{\partial z} \left(\frac{\rho_s}{S} \theta^{(0)} \right) \right\} + \beta v^{(0)} = 0.$$
 (33)

 $\theta^{(0)}$ を $p^{(0)}$ で表わし,さらに $p^{(0)}$ は ε^0 次の流れの流線関数でもあるから $p^{(0)}$ を ψ に書き直して

$$\frac{d}{dt} \left\{ \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial x^2} + \frac{1}{\rho_s} \frac{\partial}{\partial z} \left(\frac{\rho_s}{S} \frac{\partial \psi}{\partial z} \right) + \beta y \right\} = 0.$$
 (34)

これが準地衡流ポテンシャル渦度方程式 (Quasi-Geostrophic Potential Vorticity Equation) である.

文献

Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer-Verlag. 710pp.