らくらく DCPAM5

地球流体電脳倶楽部

平成30年3月4日

第1章	この文書について	1
第2章	設定ファイルを用いた実験設定の変更	2
2.1	解像度を変更するには	. 3
2.2	積分期間を変更するには	. 4
2.3	物理定数・惑星に関する定数を変更するには	. 5
2.4	出力設定を変更するには	. 6
2.5	リスタート計算を行うには	. 9
	2.5.1 DCPAM5 でのリスタート計算の概要	. 9
	2.5.2 リスタートファイルの出力のための設定	. 10
	2.5.3 リスタート計算を行うための設定	. 11
第3章	ソースの変更・追加	15
3.1	一般的手順	. 15
3.2	初期値・海水面温度分布の変更	
	3.2.1 準備	. 17
	3.2.2 作業用ディレクトリ作成	
	3.2.3 ソースプログラムの編集	
	3.2.4 実験実行用のディレクトリのセットアップ	. 19
	3.2.5 実行ファイルの作成	
	3.2.6 実験の実行	. 21
	3.2.7 最後に	
3.3	出力する変数を増やす	
	3.3.1 準備	. 22
	3.3.2 作業用ディレクトリ作成	
	3.3.3 ソースプログラムの編集	. 23
	3.3.4 設定ファイルの編集	
	3.3.5 実験実行用のディレクトリのセットアップ	
	3.3.6 実行ファイルの作成	
	3.3.7 実験の実行	
	3.3.8 最後に	. 27
3.4		

	3.4.1 準備	27
	3.4.2 作業用ディレクトリ作成	28
	3.4.3 モジュールプログラムの用意とプログラムの変更	29
	3.4.4 設定ファイルの編集	29
	3.4.5 実験実行用のディレクトリのセットアップ	29
	3.4.6 実行ファイルの作成	30
	3.4.7 実験の実行	
	3.4.8 最後に	
第4章	鉛直 1 次元計算を行うには	32
4.1	はじめに	32
4.2	DCPAM5 の鉛直 1 次元化の概要	
4.3	コンパイル	
4.4	鉛直 1 次元計算のための設定	
	4.4.1 格子点数の指定	
	4.4.2 力学過程の指定	
	4.4.3 緯度, 経度の指定	
4.5	鉛直 1 次元計算の実行	34
第5章	軸対称 2 次元計算を行うには	35
5.1	はじめに	35
5.2	DCPAM5 の軸対称 2 次元化の概要	35
5.3	コンパイル	
5.4	軸対称 2 次元計算のための設定	
	5.4.1 格子点数の指定	
5.5	軸対称 2 次元計算の実行	
第6章	並列計算を行うには	37
6.1	はじめに	37
6.2	DCPAM5の MPI 並列化の概要	37
	6.2.1 分割方法	37
	6.2.2 入出力	38
6.3	コンパイル	
	6.3.1 必要なソフトウェアの準備	39
	6.3.2 コンパイル時の注意	39
6.4	並列計算の実行	
6.5	入出力データの分割と統合	
	6.5.1 入力データの分割	
	6.5.2 出力データの統合	41

付	録A	namelist 変数一覧 (20110615)	版) 1
付	録B	使用上の注意とライセンス規定	21

第1章 この文書について

この文書は、地球流体電脳倶楽部で開発中の惑星大気モデル (Dennou-Club Planetary Atmospheric Model) のバージョン 5 である DCPAM5 の使用方法について記すものである。入門的解説文書「ごくらく DCPAM5」¹ に比較して、より高度な使い方を解説する.

設定ファイルを用いた実験設定の変更,ソースプログラムを変更して実験する方法, 鉛直 1 次元・2 次元軸対称モデルの使用法,並列計算について解説する.

 $^{^1\ \ \, {\}rm http://www.gfd\mbox{-}dennou.org/library/dcpam/dcpam5/dcpam5_latest/doc/tutorial/gokuraku/index.htm}$

第2章 設定ファイルを用いた実験設 定の変更

この章では設定ファイル (NAMELIST ファイル) を用いた実験設定の変更方法について記す. NAMELIST 変数のリストは http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/doc/code_reference/htm/classes/NAMELIST.htmlに一覧があるので参照されたい.

設定ファイルを変更した後の実際の計算実行の方法については「ごくらく DC-PAM5」http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/doc/gokuraku/を参照されたい.

2.1 解像度を変更するには

解像度は、設定ファイル (NAMELIST ファイル) に **&gridset_nml** を用いて設定する. 例えば設定ファイルの例である dcpam_hs94_T21L20.conf ¹ には下のように設定されている.

```
&gridset_nml! 最大全波数.nmax = 21,! 極大全波数.! Maximum truncated wavenumberimax = 64,! 経度格子点数.! Number of grid points in longitudejmax = 32,! 解度格子点数.! Number of grid points in latitudekmax = 20! 鉛直層数.! Number of vertical level
```

これは、T21L20 の解像度 (経度、緯度、鉛直方向の格子点数はそれぞれ 64, 32, 20) の設定である. これを T42L20 の解像度にするためには下のように設定する.

```
kgridset_nml! 最大全波数.nmax = 42,! 極大全波数.! Maximum truncated wavenumberimax = 128,! 経度格子点数.! Number of grid points in longitudejmax = 64,! 緯度格子点数.! Number of grid points in latitudekmax = 20! 鉛直層数.! Number of vertical level
```

なお,鉛直解像度 (層数) を変更する場合には, axesset_nml) の Sigma の値を編集し,各層の配置も指定する必要がある.

http://www.gfd-dennou.org/www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_ latest/exp_setup_files/dcpam_hs94_T21L20.conf

2.2 積分期間を変更するには

積分期間は、設定ファイル (NAMELIST ファイル) に**×et_nml** を用いて設定する. DCPAM5 では 2 つの方法のどちらかで積分期間を設定する. ひとつは積分する時間を設定する方法、もうひとつは積分開始と終了の時刻を指定する方法である. 例えば、設定ファイルの例である $depam_hs94_T21L20.conf^2$ では、積分する時間を設定しており、下のように設定されている

これは 10 日間積分することを表している. これを変更して積分時間を 20 日間に するためには下のように設定する.

もうひとつの方法である、積分開始と終了の時刻を使って積分期間を設定するには下のように指定する.

http://www.gfd-dennou.org/www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/dcpam_hs94_T21L20.conf

```
&timeset_nml
  cal_type
                     = 'noleap',
  InitialYear
                            1.
  InitialMonth
                            1,
  InitialDay
                            1,
                     =
  InitialHour
                            Ο,
                     =
  InitialMin
                            0,
  InitialSec
                            0.0d0,
                     =
  EndYear
                            1,
  EndMonth
                            1,
                            3,
  EndDay
  EndHour
                            0,
  EndMin
  EndSec
                            0.0d0,
/
```

cal_type は暦の種類を指定し、上記で指定している noleap はうるう年のない暦を表している. InitialYear, InitialMonth, ... は開始年, 月, ... を表し、EndYear, EndMonth, ... は終了年, 月, ... を表している. その他の指定については、gtool5 チュートリアル、DCCalCreate の項目 http://www.gfd-dennou.org/library/gtool/gtool5/gtool5_current/doc/tutorial/dc_calendar1.htm を参照されたい.

2.3 物理定数・惑星に関する定数を変更するには

惑星に関する定数は、設定ファイル (NAMELIST ファイル) に&constants_nml を用いて設定します. 例えば、設定ファイルの例である dcpam_hs94_T21L20.conf 3 では、下のように設定されている.

http://www.gfd-dennou.org/www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/dcpam_hs94_T21L20.conf

= 7.292e-5,

! Radius of planet

! \$ \Omega \$ [s-1].

! 回転角速度.

! Angular velocity

Grav = 9.8,

! \$ g \$ [m s-2].

! 重力加速度.

! Gravitational acceleration

CpDry = 1004.0,

! \$ C_p \$ [J kg-1 K-1].

! 乾燥大気の定圧比熱.

! Specific heat of air at constant pressure

GasRDry = 286.85714285

! \$ R \$ [J kg-1 K-1].

! 乾燥大気の気体定数.

! Gas constant of air

/

これら上から順に, 惑星半径, 自転角速度, 重力加速度, 大気の定圧比熱, 大気の気体定数を指定している. これらの指定を変更することで, 値を変更することができる.

2.4 出力設定を変更するには

解析用のヒストリデータの出力に関する設定は**>ool_historyauto_nml** を編集 することで変更する. 例えば設定ファイルの例である dcpam_hs94_T21L20.conf ⁴ には下のように設定されている.

```
! ヒストリデータ出力の全体設定
! Global settings about history data output
!
&gtool_historyauto_nml
IntValue = 1.0,
```

http://www.gfd-dennou.org/www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/exp_setup_files/dcpam_hs94_T21L20.conf

```
! ヒストリデータの出力間隔の数値.
                           ! 負の値を与えると、出力を抑止します.
                           ! Numerical value for interval of history data output
                           ! Negative values suppress output.
 IntUnit = 'day',
                           ! ヒストリデータの出力間隔の単位.
                           ! Unit for interval of history data output
 Precision = 'float',
                        ! 単精度
                           ! ヒストリデータの精度.
                           ! Precision of history data
 FilePrefix = '',
                           ! ヒストリデータのファイル名の接頭詞.
                           ! Prefixes of history data filenames
! ヒストリデータ出力の個別設定
! Individual settings about history data output
&gtool_historyauto_nml
 Name = 'U, V, Temp, Ps, QVap, Vor, Div, SigDot, DPiDt'
&gtool_historyauto_nml
 Name = 'Mass, KinEngy, IntEngy, PotEngy, LatEngy, TotEngy, Enstro',
 SpaceAverage = .true., .true., .true., .true.
```

それぞれの設定項目について以下に記す.

IntValue

(実数型) 出力間隔の数値

IntUnit

(文字型) 出力間隔の単位. "sec", "min", "hour", "day", "month", "year" などが使用可能である. 使用可能な単位の詳細については, gtool5 ライブラリ: dc_date_types モジュールhttp://www.gfd-dennou.org/library/gtool/gtool5/gtool5_current/doc/code_reference/classes/dc_date_types.html の"Characters list for unit" を参照されたい.

Precision

(文字型) データの精度. "float" (単精度実数型), "double" (倍精度実数型), "int" (整数型) を指定可能

SpaceAverage

(論理型配列) 空間平均のフラグ. 配列の1番目,2番目,3番目が,経度,緯 度, 高度 (σ) に対応する.

TimeAverage

(論理型配列) 時間平均のフラグ.

Name を指定しない、もしくは空文字を与えた場合、それは全ての変数に対するデ フォルト設定となる. その場合にのみ有効な項目として以下のものがある.

FilePrefix

(文字型) データのファイル名の接頭詞. 例えば "exp1-" と指定すれば, 変数 "U" の出力ファイル名は "exp1-U.nc" となる. また, "data01/" のようにス ラッシュを含む文字列を指定することで、カレントディレクトリ以外の場所 に出力するよう設定することも可能である.

出力時間間隔などは、これらの値を編集することで変更することができる.

より詳しい説明については、gtool5 チュートリアル:多数のファイル出力を行う モデルでのデータ出力 - 設定可能な項目 http://www.gfd-dennou.org/library/ gtool/gtool5/gtool5_current/doc/tutorial/gtauto_first.htm#label-7 & 参照されたい.

また、さらに出力する変数を追加する場合には、

```
&gtool_historyauto_nml
  Name = 'U, V, Temp, Ps, QVap, Vor, Div, SigDot, DPiDt'
```

の Name の行に変数名を追加すか、新たに下のように行を追加する.

```
&gtool_historyauto_nml
  Name = 'XXX'
```

2.5 リスタート計算を行うには

この節では、DCPAM5でのリスタート計算の方法について述べる。ここで言う、リスタート、とは、ある期間積分した後で、その最後の状態から計算を再開することを指す 5 .

2.5.1 DCPAM5 でのリスタート計算の概要

DCPAM5のリスタート計算は、以下の手順により行う.

- リスタートファイルの指定,
 - 大気中の予報変数用のリスタートファイル,
 - 惑星表面・土壌中の変数用のリスタートファイル、
 - 予備変数用のファイル、
- 予備変数用のファイルの指定,
- 計算再開時刻の指定.
- 積分時間 / 積分終了時刻の指定.

つまり、再計算のためには、それ以前の計算において

- 大気中の予報変数用のリスタートファイル、
- 惑星表面・土壌中の変数用のリスタートファイル、
- 予備変数用のファイル,

を出力しておく必要がある.

また, 現在の DCPAM5 においては, 計算条件によっては, 正確なリスタート計算のためには制限がある. 具体的には, 地球計算, 火星計算において, リスタートファ

 $^{^{5}}$ 実際には、リスタートファイルが作成されていれば、前回の積分の途中からの再開も可能である.

イルの出力時刻が放射計算の時刻と一致している必要がある⁶. 正確なリスタート 計算を行う場合には、リスタートファイルの出力タイミングに注意すること.

リスタートファイルの出力のための設定 2.5.2

リスタート計算を行う場合に必要となるリスタートファイルは, 下のように指定す ることで出力される7.

大気中の変数用のファイル、惑星表面・土壌中の変数用のファイルは、それぞれ、 DCPAM5 の計算において以下の namelist ブロックで好きな名前を指定できる.

◆ 大気中の予報変数用のリスタートファイル、

```
&restart_file_io_nml
 OutputFile = ,ファイル名,
```

● 惑星表面・土壌中の変数用のリスタートファイル、

```
&restart_surftemp_io_nml
 OutputFile = ,ファイル名,
```

⁶ DCPAM5 においては、計算時間の節約のために、放射計算はすべての時間ステップで行ってい るわけではなく、ある一定の時間間隔でのみ行う.この放射計算のタイミングと異なる時間ステッ プにおいては、前回の放射計算の結果を使用して時間積分する. したがって、放射計算のタイミン グと異なるタイミングで計算が終了してしまうと, リスタート計算開始時に前回の放射計算結果を 持っていないため、(正確な) リスタート計算ができない. もちろん、この放射計算に関わる予備変 数を保存しておけば, (正確な) リスタート計算が可能である. 地球流体電脳倶楽部大気大循環モデ ル AGCM5 のデフォルト放射モデルを用いた計算においては, 放射計算に関わる予備変数もファ イルに書き出しており、常に(正確な)リスタート計算が可能である(ことになっている).

⁷ 出力指定していない場合にも、計算の終了時にリスタートファイルが作られる. この時のファイ ル名は、大気中の変数用ファイルは rst.nc、惑星表面・土壌中の変数用ファイルは rst_sst.nc、AGCM5 のデフォルト放射モデルで用いる予備変数用のファイルは rst_rad.nc となる. このため、明示的に 指定しなくてもリスタートすることは可能である.

2.5.3 リスタート計算を行うための設定

リスタート計算を行う場合には、設定ファイル (namelist ファイル) に下のように指定する.

計算再開時刻の指定

```
&timeset_nml
...
RestartTimeValue = XXX
RestartTimeUnit = YYY
...
/
```

なお、このとき、InitialYear、InitialMonth、等 Initial* は、リスタート時刻ではなく、初回の計算の時刻を指定するため、ここでは設定を変更する必要はない.

指定する Restart Time Value, Restart Time Unit の値は, 実際には restart_file_io_nml の Input File に指定されるファイルの中の変数 time のある値とするのが良い. 例えば, リスタートファイル名が input.nc であり,

```
% ncdump -v time input.nc
netcdf input {
    ...
    double time(time) ;
        time:long_name = "time" ;
        time:units = "sec" ;
    ...
    time = 0, 86400, 172800 ;
}
```

の場合に,前回の計算の終了時からの再計算を行う場合には,下のように指定する.

```
&timeset_nml
...
```

```
RestartTimeValue = 172800.0
 RestartTimeUnit = 'sec'
&restart_file_io_nml
 InputFile = 'input.nc'
/
```

ここで、restart_file_io_nml ブロックについては下を参照の事.

なお、RestartTimeValue に与える数値は、倍精度で書いてもよい.

大気中の予報変数用のリスタートファイルの指定

大気中の予報変数用のリスタートファイル名は下のように指定する.

```
&restart_file_io_nml
 InputFile = , ファイル名,
/
```

このとき、計算の結果として得られる次のリスタートファイルのデフォルトの名前 が rst.nc であることに注意する必要がある。その出力されるリスタートファイル の名前を OutputFile で指定せずに (デフォルトのファイル名のままで), 大気中の 予報変数用のリスタートファイル名 (InputFile) を rst.nc とすると, 上書きされる.

惑星表面・土壌中の変数用のリスタートファイルの指定

惑星表面・土壌中の変数用のリスタートファイル名は下のように指定する.

```
&restart_surftemp_io_nml
  . . .
```

```
InputFile = 'ファイル名'
...
/
```

このとき、計算の結果として得られる次のリスタートファイルのデフォルトの名前が rst_sst.nc であることに注意する必要がある. その出力されるリスタートファイルの名前を OutputFile で指定せずに (デフォルトのファイル名のままで), 惑星表面・土壌中の変数用のリスタートファイル名 (InputFile) を, rst_sst.nc とすると, 上書きされる.

積分時間 / 積分終了時刻の指定

DCPAM5では、積分期間を二つの方法で指定できる。一つは積分時間であり、もう一つは積分終了時刻である。

積分時間で指定する場合、下のようにする.

```
&timeset_nml
...
IntegPeriodValue = 12.0,
IntegPeriodUnit = 'day',
...
/
```

この指定は、リスタート後に12日間積分することを表す.

積分終了時刻で指定する場合,下のようにする.

```
&timeset_nml
...
EndYear = 11,
EndMonth = 1,
EndDay = 1,
EndHour = 0,
EndMin = 0,
```

EndSec = 0.0d0,

/

この指定は, 11 年 1 月 1 日 0 時 0 分 0 秒まで積分することを表す.

第3章 ソースを変更・追加して計算 を実行したい場合には

この章では、ソースプログラムを変更あるいは追加して実行ファイルを作成し計算を行う際のお勧めの方法について記す.

3.1 ソースを変更・追加する一般的手順

DCPAM5のソースプログラムを変更あるいは追加したい場合には, DCPAM5のオリジナルソースツリー内にあるファイルを直接編集したりツリー内にファイルを追加したりすることは避けて頂きたい. 以下の手順のように, オリジナルソースツリーとは別のディレクトリを用意してその下で作業することを勧める. そのための手順は一般的に次のようになるだろう.

- 1. ライブラリとモジュールファイルの作成 オリジナルソースツリーで DCPAM5 を configure, コンパイルしておく.
- 2. 実験用ディレクトリの作成 オリジナルソースツリーの外に実験用ディレクトリを作成する.
- 3. ソースプログラムの編集・追加 改変したいソースプログラムファイルをオリジナルソースからコピーし,編集 する. あるいは新たに追加したいモジュールのソースプログラムを作成する.
- 4. 設定ファイル (namelist ファイル) の準備 実験用設定ファイルを作業ディレクトリに用意する. オリジナルソースの例 をコピーし必要に応じて編集するのが簡単だろう.
- 5. 実験用のディレクトリのセットアップ 実行ファイル作成のための環境 (Makefile 等) を用意する.

- 6. 実行ファイルの作成 make コマンドで実行ファイルを作成する.
- 7. 実験の実行

作業ディレクトリは以下のような構造を想定している.

```
top-directory/
   /exp-name1/
                     # 非標準ソースオリジナル
          /src/
             /main # 実行プログラムソース置き場
             /otherdir1 # モジュールソース置き場
                    # 非標準設定ファイルオリジナル
          /conf
                    # 実行ファイル置き場
          /bin
                    # モジュールファイル置き場
          /include
                    # データ置き場1
          /data1
                    # データ置き場2
          /data2
   /exp-name2/
```

3.2 初期値・海水面温度分布などを変更するには

この節では、ソースプログラムを改変して計算実行する一例として初期値・海水面温度分布などを変更するための手順を記す. 具体的な例題として水惑星実験 (APE:Aqua Planet Experimets) の海水面温度分布を変更してみる. 実際に改造するソースプログラムは海水面温度データ作成プログラムソース "src/main/sst_data.f90" であるが、適宜初期値データ作成プログラムソース "src/main/init_data.f90" に置き換えることで初期値データの変更もできるだろう.

3.2.1 準備

インストールガイド (http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/INSTALL.htm) にしたがって、DCPAM5をコンパイルしてライブラリ (lib/libdcpam5.a) とモジュールファイル (include/*.mod 等) を作成しておく.

3.2.2 作業用ディレクトリ作成

まず DCPAM5 ソースのトップディレクトリ (以下の例では dcpam5-YYYYMMDD とする) に移動しておく. 次にソース変更作業と実験用ディレクトリを DCPAM5 ソースツリー外部に作成する. ここでは DCPAM5 ソースツリーの隣に dcpam5-exp/initsst ディレクトリを作成し, その中で作業を行うことにする.

% mkdir -p ../dcpam5-exp/initsst

作成した実験用ディレクトリに移り、その下に実験専用のソースファイル置き場設 定ファイル (NAMELIST ファイル) 置き場を作成する.

- % cd ../dcpam5-exp/initsst
- % mkdir -p src/main
- % mkdir conf

初期値作成. 海水面温度データ作成のソースプログラムとモデル本体のソースプロ グラムを "src/main" ディレクトリにコピーする. 用いる設定ファイル (の元)を "conf" ディレクトリにコピーする.

```
% cp ../../dcpam5-YYYYMMDD/src/main/*.f90 src/main
% cp ../../dcpam5-YYYYMMDD/conf/dcpam_ape_T21L16.conf conf
% cp ../../dcpam5-YYYYMMDD/conf/init_data_T21L16.conf conf
% cp ../../dcpam5-YYYYMMDD/conf/sst_data_T21.conf conf
```

3.2.3 ソースプログラムの編集

コピーしたプログラムソースファイルを編集し、作成したい初期値分布あるいは海 水面温度分布をプログラムする. 例として, "src/main/sst_data.f90" を編集して, 海水面温度分布を $250+50\sin^2\varphi$ に変更してみよう (φ は緯度). まず, 緯度情報 を用いるために先頭のモジュール使用宣言部部分に"gridset" モジュールの "imax, imax"を用いるよう追加する(各行にある!以降の部分はコメントなので入力を省 略しても構わない).

```
! 格子点設定
! Grid points settings
use gridset, only: imax, & ! 経度格子点数.
                          ! Number of grid points in longitude
                          ! 緯度格子点数.
 &
                 jmax
                          ! Number of grid points in latitude
```

さらに "axesset" モジュールの "y_Lat" 変数を用いるよう追加する.

```
! 座標データ
! Axes data
use axesset, only: y_Lat
```

作業変数の宣言部にて DO loop 変数 i, j を宣言しておく.

```
integer :: i, j
! Do loop variable
```

次に,海水面温度を設定している箇所

```
! 地表面データの作成
! Generate surface data
!
call RestartSurfTempOutput( &
& xy_SurfTemp ) ! (in)
```

を次のように変更する.

```
! 地表面データの作成
! Generate surface data
!
!!!call RestartSurfTempOutput( &
!!! & xy_SurfTemp ) ! (in)
!
do j=1,jmax
    do i=0,imax
        xy_SurfTemp(i,j) = 250.0d0 + 50.0d0*sin(y_Lat(j))**2
    end do
end do
```

3.2.4 実験実行用のディレクトリのセットアップ

さて、ファイルの準備が整ったら、実験実行用のディレクトリをセットアップする. そのためには DCPAM5 のソースツリートップに戻って"make expdir" を実行する. すると、作業ディレクトリトップの名前と非標準ソースディレクトリ名並びに実験ディレクトリの名前をきかれるので、それらを入力する.

```
% cd ../../dcpam5-YYYYMMDD
% make expdir
```

Enter top directory name []: ../dcpam5-exp Enter experimet directory name []: initsst

*** "../dcpam5-exp/initsst" is already exist ***

Directory in which non-standard files are prepared

[../dcpam5-exp/initsst/src]: Creating "../dcpam5-exp/initsst/Makefil Creating "../dcpam5-exp/initsst/src/Makefile" ... done.

Creating "../dcpam5-exp/initsst/src/main/Makefile" ... ls: ../dcpam5-expのようなファイルやディレクトリはありません

done.

Creating "../dcpam5-exp/initsst/Config.mk" ... done. Creating "../dcpam5-exp/initsst/rules.make" ... done.

*** Setup of "../dcpam5-exp/initsst" is complete ***

すると、../dcpam5-exp/initsst/ に Config.mk と rules.make ならびに src 以下の各サブディレクトリの Makefile が作成される.

3.2.5 実行ファイルの作成

実行ファイルを作成しよう. そのためには実験ディレクトリ"../dcpam5-exp/initsst" に移って"make"を行う 1 .

% cd ../dcpam5-exp/initsst
% make

コンパイルエラーが出てしまったら, 先程編集したファイルを修正し, 再び "make" を行う. エラーがなくなるまでこの作業を繰りかえす.

 $[\]frac{1}{3}$ 環境変数 FFLAGS を DCPAM5 ライブラリを作成したときと同じ値にしておく必要があるかもしれない.

めでたくエラーがなくなり、実行ファイルができ上がったら

% make install

を実行する. すると実行ファイルが "bin" ディレクトリにインストールされる.

3.2.6 実験の実行

実行の仕方はごくらく DCPAM5 の水惑星実験の手順と一緒である. まず初期値, 海水面温度データを作成する.

- % bin/dcpam_init_data_surface -N=./conf/sst_data_T21.conf
- % bin/dcpam_init_data -N=./conf/init_data_T21L16.conf

そして、実験を実行するには、

% bin/dcpam_main -N=./conf/dcpam_ape_T21L16.conf \
>& dcpam_ape_T21L16.log &

といった具合である.

簡単な解析と可視化については、「ごくらく DCPAM5」 の「簡単な解析・可視化」を参照のこと.

3.2.7 最後に

実験のために修正したファイルらは別の場所にコピー保存しておくことを勧める.

- % cp src/main/sst_data.f90 [somewhere]
- % ср ...

出力する変数を増やすには 3.3

この節では、出力する変数を増やすためのソースプログラムを改変と実行ファイル を作成するための手順を記す. 具体的な例題として Held and Schuarz (1994) のべ ンチマーク実験でを追加出力することを試みる. 実際の改造は、

HistoryAutoAddVariable ! 出力変数の定義 !データ出力 HistoryAutoPut

の2項目を追加することになる.そのほかに実験設定ファイルにおいて、新たに出 力したい変数名を追加する必要がある.

以下の例では、実際に改造するソースプログラムがモジュールソースファイル "src/held_suarez_1994/held_suarez_1994.f90" であるが、他のモジュールプログラム においても同様の手順で出力データの追加をしたプログラムを作成・実行できる だろう.

また,前章「設定ファイルを用いた実験設定の変更」での「出力設定を変更するには」 の節、あるいは「ごくらく DCPAM5」の「実験条件の変更/出力設定の変更」https: //www.gfd-dennou.org/GFD_Dennou_Club/dc-arch/takepiro/dcpam5-cvs/doc/ gokuraku/changesetup.htm#label-4 も参照されたい.

準備 3.3.1

インストールガイド(http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_ latest/INSTALL.htm) にしたがって、DCPAM5をコンパイルしてライブラリ (lib/libdcpam5.a) とモジュールファイル (include/*.mod 等) を作成しておく.

3.3.2 作業用ディレクトリ作成

まず DCPAM5 ソースのトップディレクトリ (以下の例では dcpam5-YYYYMMDD とする) に移動しておく. 次にソース変更作業と実験用ディレクトリを DCPAM5 ソースツリー外部に作成する. ここでは DCPAM5 ソースツリーの隣に dcpam5exp/addoutput ディレクトリを作成し, その中で作業を行うことにする.

% mkdir -p ../dcpam5-exp/addoutput

作成した実験用ディレクトリに移り、その下に実験専用のソースファイル置き場設定ファイル (NAMELIST ファイル) 置き場を作成する.

- % cd ../dcpam5-exp/addoutput
- % mkdir -p src/main
- % mkdir src/held_suarez_1994
- % mkdir conf

初期値作成のソースプログラムとモデル本体のソースプログラムを "src/main" ディレクトリにコピーする. 用いる設定ファイル (の元) を "conf" ディレクトリにコピーする.

- % cp ../../dcpam5-YYYYMMDD/src/main/dcpam_main.f90 src/main
- % cp ../../dcpam5-YYYYMMDD/src/main/init_data.f90 src/main
- % cp ../../dcpam5-cvs/src/held_suarez_1994/held_suarez_1994.f90 \ src/held_suarez_1994
- % cp ../../dcpam5-YYYYMMDD/exp_setup_files/dcpam_hs94_T21L20.conf conf
- % cp ../../dcpam5-YYYYMMDD/exp_setup_files/init_data_hs94_T21L20.conf conf

3.3.3 ソースプログラムの編集

コピーしたプログラムソースファイルを編集し出力する変数を追加する. 例として, "src/held_suarez_1994/held_suarez_1994.f90" を編集して, 温位 $\theta=T(p_0/p)^\kappa$ を出力に追加してみよう

まず、ヒストリデータ出力のためのへの変数登録箇所において温位を出力変数として追加する. 'subroutine Hs94Init' 中の

call HistoryAutoAddVariable('TempEQHS94', &
 & (/ 'lon ', 'lat ', 'sig ', 'time' /), &

```
& 'equilibrium temperature', 'K')
```

の下の行(507行目あたり)に"HistoryAddVariable"の項目を次のように追加する.

```
call HistoryAutoAddVariable( 'PTemp' , &
  & (/ 'lon ', 'lat ', 'sig ','time' /), &
  & 'potential temperature', 'K')
```

次に変数の出力を追加する. 'subroutine HS94Forcing' 中のヒストリーデータ出力の箇所

```
! ヒストリデータ出力
! History data output
!
call HistoryAutoPut( TimeN, 'DUDtHS94', xyz_DUDt )
call HistoryAutoPut( TimeN, 'DVDtHS94', xyz_DVDt )
call HistoryAutoPut( TimeN, 'DTempDtHS94', xyz_DTempDt )
call HistoryAutoPut( TimeN, 'TempEQHS94', xyz_TempEQ )
```

の下に、次の行を追加する.

```
call HistoryAutoPut( TimeN, 'PTemp', xyz_Temp*(1.0d5/xyz_Press)**Kappa)
```

3.3.4 設定ファイルの編集

実験用設定ファイルに、新たに出力したい変数名を追加する../conf/dcpam_hs94_T21L20.confの最後の方の「ヒストリデータ出力の個別設定」のリストに "PTemp" を追加する.

```
! ヒストリデータ出力の個別設定
```

```
! Individual settings about history data output
&gtool_historyauto_nml
  Name = 'U, V, Temp, Ps, QVap, SigDot, OMG, TempEQHS94, PTemp'
```

実験実行用のディレクトリのセットアップ 3.3.5

% cd ../../dcpam5-YYYYMMDD

さて、ファイルの準備が整ったら、実験実行用のディレクトリをセットアップする. そのためには DCPAM5 のソースツリートップに戻って"make expdir" を実行す る. すると, 作業ディレクトリトップの名前と非標準ソースディレクトリ名並びに 実験ディレクトリの名前をきかれるので、それらを入力する.

```
% make expdir
     sh ./setup_expdir_nonstd.sh
     ***** Setup a directory for a experiment *****
     Enter top directory name []: ../dcpam5-exp
     Enter experimet directory name []: addoutput
     *** "../dcpam5-exp/addoutput" is already exist ***
       Directory in which non-standard files are prepared
         [../dcpam5-exp/addoutput/src]: Creating "../dcpam5-exp/addoutput/Makefile
       Creating "../dcpam5-exp/addoutput/src/Makefile" ... done.
       Creating "../dcpam5-exp/addoutput/src/main/Makefile" ... ls: ../dcpam5-exp/ad
のようなファイルやディレクトリはありません
       done.
       Creating "../dcpam5-exp/addoutput/src/held_suarez_1994/Makefile" ... ls: ../d
のようなファイルやディレクトリはありません
       Creating "../dcpam5-exp/addoutput/Config.mk" ...
```

Creating "../dcpam5-exp/addoutput/rules.make" ... done.

done.

*** Setup of "../dcpam5-exp/addoutput" is complete ***

すると、../dcpam5-exp/addouput/ に Config.mk と rules.make ならびに src 以下の各サブディレクトリの Makefile が作成される.

3.3.6 実行ファイルの作成

実行ファイルを作成しよう. そのためには実験ディレクトリ "../dcpam5-exp/addoutput" に移って"make" を行う 2 .

% cd ../dcpam5-exp/addoutput

% make

コンパイルエラーが出てしまったら, 先程編集したファイルを修正し, 再び "make" を行う. エラーがなくなるまでこの作業を繰りかえす.

めでたくエラーがなくなり、実行ファイルができ上がったら

% make install

を実行する. すると実行ファイルが "bin" ディレクトリにインストールされる.

3.3.7 実験の実行

実行の仕方はごくらく DCPAM5 の Held and Suarez (1994) 実験の手順と一緒である. まず初期値データを作成する.

 $^{^2}$ 環境変数 FFLAGS を DCPAM5 ライブラリを作成したときと同じ値にしておく必要があるかもしれない.

% bin/init_data -N=./conf/init_data_hs94_T21L20.conf

そして、実験を実行するには、

% bin/dcpam_main -N=./conf/dcpam_hs94_T21L20.conf \
>& dcpam_hs94_T21L20.log &

といった具合である. "PTemp.nc" が作成されていたら成功である.

簡単な解析と可視化については、「ごくらく DCPAM5」 の「簡単な解析・可視化」を参照のこと.

3.3.8 最後に

実験のために修正したファイルらは別の場所にコピー保存しておくことを勧める.

```
% cp src/held_suarez_1994/held_suarez_1994.f90 [somewhere]
```

% cp conf/dcpam_hs94_T21L20 [somewhere]

% ср ...

3.4 モジュールを変更・追加するには

この節では、モジュールを変更・追加するための一般的な手順を記す。モジュールを変更する場合に関しては先の節「出力する変数を増やすには」も参考にされたい.

3.4.1 準備

インストールガイド (http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/INSTALL.htm) にしたがって, DCPAM5をコンパイルしてライブラリ (lib/libdcpam5.a) とモジュールファイル (include/*.mod 等) を作成しておく.

3.4.2 作業用ディレクトリ作成

まず DCPAM5 ソースのトップディレクトリ (以下の例では dcpam5-YYYYMMDD とする) に移動しておく. 次にソース変更作業と実験用ディレクトリを DCPAM5 ソースツリー外部に作成する. ここでは DCPAM5 ソースツリーの隣に dcpam5-exp/addmodule ディレクトリを作成し, その中で作業を行うことにする.

% mkdir -p ../dcpam5-exp/addmodule

作成した実験用ディレクトリに移り、その下に実験専用のソースファイル置き場を作成する.実行プログラムソースファイル用のディレクトリ "src/main" に加えて、新たなモジュール、あるいは変更するモジュールのソースファイル置き場として適当な名前のディレクトリを "src" 以下に作成する (以下の例では foo とする). さらに設定ファイル (NAMELIST ファイル) 置き場を作成する.

% cd ../dcpam5-exp/addoutput

% mkdir -p src/main

% mkdir src/foo

% mkdir conf

実行ファイルプログラムを "src/main" ディレクトリにコピーする. モジュールを変更したい場合には, そのソースプログラムをコピーする (以下の例では bar.f90 としている). また, 用いる設定ファイル (の元) を "conf" ディレクトリにコピーする (以下の例では xxx.conf としている. 設定ファイル (の元) は一般に実行用と初期値作成用ならびに地表面温度作成用の 3 種類が必要となる).

% cp ../../dcpam5-YYYYMMDD/src/main/*_main.f90 src/main

% cp ../../dcpam5-YYYYMMDD/src/foo/bar.f90 src/foo

% cp ../../dcpam5-YYYYMMDD/exp_setup_files/xxx.conf conf

3.4.3 モジュールプログラムの用意とプログラムの変更

モジュールを変更する場合には、コピーしたモジュールソースプログラム (" $\mathrm{src/foo/bar.f90"}$) を編集し変更する.

新しいモジュールを用意する場合には、そのソースファイルを "src/foo" ディレクトリにおく。モジュール名とファイル名の拡張子を取り除いた名前はおなじにしておかねばならないことに注意されたい。そして新しいモジュールをプログラムで使うべく、他のプログラムソースファイルも編集する必要があるだろう。そのようなファイルも "src" 以下に適当なディレクトリを作成し格納しておく (もちろん foo ディレクトリに並べておいても良い)。

3.4.4 設定ファイルの編集

新たに追加したモジュールにおいて NAMELIST 変数を追加した場合には実験用設定ファイルを適宜変更する.

3.4.5 実験実行用のディレクトリのセットアップ

さて、ファイルの準備が整ったら、実験実行用のディレクトリをセットアップする. そのためには DCPAM5 のソースツリートップに戻って"make expdir" を実行する. すると、作業ディレクトリトップの名前と非標準ソースディレクトリ名並びに実験ディレクトリの名前をきかれるので、それらを入力する.

```
% cd ../../dcpam5-YYYYMMDD
% make expdir
sh ./setup_expdir_nonstd.sh
```

***** Setup a directory for a experiment *****

```
Enter top directory name []: ../dcpam5-exp
Enter experimet directory name []: addmodule
```

*** "../dcpam5-exp/addoutput" is already exist ***

Directory in which non-standard files are prepared

[../dcpam5-exp/addoutput/src]: Creating "../dcpam5-exp/addoutput/MalCreating "../dcpam5-exp/addoutput/src/Makefile" ... done.

Creating "../dcpam5-exp/addoutput/src/main/Makefile" ... ls: ../dcpam5-eのようなファイルやディレクトリはありません

done.

Creating "../dcpam5-exp/addoutput/src/held_suarez_1994/Makefile" ... ls のようなファイルやディレクトリはありません

done.

Creating "../dcpam5-exp/addoutput/Config.mk" ... done.
Creating "../dcpam5-exp/addoutput/rules.make" ... done.

*** Setup of "../dcpam5-exp/addoutput" is complete ***

すると、../dcpam5-exp/addmodule/ に Config.mk と rules.make ならびに src 以下の各サブディレクトリの Makefile が作成される.

3.4.6 実行ファイルの作成

実行ファイルを作成しよう. そのためには実験ディレクトリ "../dcpam5-exp/addmodule" に移って"make" を行う 3 .

% cd ../dcpam5-exp/addoutput
% make

コンパイルエラーが出てしまったら, 先程編集したファイルを修正し, 再び "make" を行う. エラーがなくなるまでこの作業を繰りかえす.

めでたくエラーがなくなり、実行ファイルができ上がったら

% make install

 $^{^3}$ 環境変数 FFLAGS を DCPAM5 ライブラリを作成したときと同じ値にしておく必要があるかもしれない.

を実行する. すると実行ファイルが "bin" ディレクトリにインストールされる.

3.4.7 実験の実行

実行の仕方はごくらく DCPAM5 での各実験の手順とおなじである. まず初期値 データを作成する.

% bin/dcpam_init_data -N=./conf/init_data...conf

必要ならば海水面温度分布データを作成する.

% bin/dcpam_init_data_surface -N=./conf/sst_data...conf

そして、実験を実行するには、

% bin/dcpam_main -N=./conf/dcpam_...conf
>& dcpam_....log &

といった具合である.

簡単な解析と可視化については、「ごくらく DCPAM5」 の「簡単な解析・可視化」を参照のこと.

3.4.8 最後に

実験のために修正したファイルらは別の場所にコピー保存しておくことを勧める.

第4章 鉛直1次元計算を行うには

4.1 はじめに

DCPAM5 は 3 次元モデルであるが、設定を変更することで鉛直 1 次元計算も可能である.この章では、DCPAM5 を用いて鉛直 1 次元計算の実行方法について述べる.

4.2 DCPAM5の鉛直 1 次元化の概要

鉛直 1 次元計算の実行方法について述べる前に, DCPAM5 での鉛直 1 次元化の概要について簡単に説明しておく.

DCPAM5 の鉛直 1 次元化は、緯度、経度方向の格子点数をそれぞれ 1 にし、移流を計算しないように設定することで実現している 1 . 移流計算以外は 3 次元計算の時に用いていたモジュールをそのまま用いている.

このため、例えば短波放射計算のように惑星上の緯度、経度に依存するような計算のために、計算する 1 次元カラムが位置する緯度、経度を指定する必要があり、その位置における適当な日変化、季節変化が計算される 2 .

また, 例えば海表面温度など, 外部データを読み込む際には, モデルに合わせて緯度, 経度方向の格子点数がそれぞれ 1 のデータを用意する必要がある.

 $^{^1}$ 鉛直一次元計算においては、水平方向の格子点数が 1 であるため、スペクトル変換法を用いた力学過程モジュールでは計算できない。このため、スペクトル変換法を用いた力学過程を用いないモジュールを選択する必要がある。(yot, 2011/09/30)

² もちろん、日変化、季節変化をなくす設定をすれば話は別.

4.3 コンパイル

鉛直 1 次元計算を行うためのコンパイル方法は、3 次元モデルのコンパイル方法と全く同じである. コンパイルの基本的な方法の詳細は、「DCPAM5 インストールガイド」(http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/INSTALL.htm) を参照すること.

4.4 鉛直 1 次元計算のための設定

鉛直 1 次元計算の特有の設定は, 水平格子点数, 力学過程, 鉛直 1 次元カラムの緯度, 経度の指定である. それぞれ, 下に示すように指定する.

4.4.1 格子点数の指定

既に述べたように、鉛直 1 次元計算は、緯度、経度方向の格子点数をそれぞれ 1 にすることで実現している。 緯度、経度方向の格子点数は、 $gridset_nml$ namelist ブロックにより、下のように指定する。

&gridset_nml

```
imax = 1, ! 経度格子点数.
! Number of grid points in longitude
jmax = 1, ! 緯度格子点数.
! Number of grid points in latitude
kmax = 16, ! 鉛直層数.
! Number of vertical level
kslmax = 9 ! 地下の鉛直層数.
! Number of subsurface vertical level
```

4.4.2 力学過程の指定

既に述べたように、鉛直 1 次元計算では、スペクトル変換法を用いた力学過程モ ジュールを使えないため、別のモジュールを選択する3. 異なるモジュールは、下の ように指定する.

```
&dcpam_main_nml
   DynMode
                            = 'NoHorAdv',
```

4.4.3緯度、経度の指定

既に述べたように、鉛直1次元計算では、そのカラムの緯度、経度を指定する必要 がある. 緯度、経度方向の格子点数は、axesset_nml namelist ブロックにより、下の ように指定する.

```
&axesset_nml
 LonInDeg = 0.0d0, ! 経度 (degree)
 LatInDeg = 0.0d0
                  ! 緯度(degree)
/
```

4.5 鉛直 1 次元計算の実行

鉛直1次元計算の実行方法は、3次元モデルの実行方法と全く同じである.詳細は、 「ごくらく $\mathrm{DCPAM5}$ 」(http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_ latest/doc/tutorial/gokuraku/) を参照すること.

³ この「別のモジュール」は、与えられた物理過程による時間変化率を用いて時間積分する.

第5章 軸対称 2 次元計算を行うには

5.1 はじめに

DCPAM5 は、軸対称 2 次元計算に用いることができる.この章では、DCPAM5 を用いた軸対称 2 次元計算の実行方法について述べる.

5.2 DCPAM5の軸対称 2 次元化の概要

軸対称 2 次元計算のための準備と実行方法について述べる前に, DCPAM5 での軸対称 2 次元化の概要について簡単に説明しておく.

軸対称2次元化は、下のふたつの方法によって実装している.

- 移流計算におけるスペクトル変換に spml の wa_zonal_module モジュールを 用いる,
- 経度方向の格子点数を 1 にする.

移流計算において用いる spml のスペクトル変換モジュールは, コンパイル時にプリプロセッサオプションで指定することによって選択する. 経度方向の格子点数は, 計算実行時の設定ファイル (namelist ファイル) で指定する.

なお、移流計算におけるスペクトル変換以外は 3 次元計算の時に用いていたモジュールをそのまま用いている。このとき、計算される子午面は、経度 0° における子午面として扱われ、例えば短波放射計算のように惑星上の経度 (地方時) に依存するような計算においては、経度 0° における日変化、季節変化が計算される 1.

¹ もちろん、日変化、季節変化をなくす設定をすれば話は別.

5.3 コンパイル

コンパイルの基本的な方法は逐次版と同じであり、詳細は、「DCPAM5 インストールガイド」(http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/INSTALL.htm) を参照すること. ただし、下の点に注意すること.

● 環境変数の FFLAGS に -DAXISYMMETRY または -DAXISYMMETRY_SJPACK を指定する.

5.4 軸対称 2 次元計算のための設定

軸対称 2 次元計算の特有の設定は、格子点数の指定である. 下に示すように指定する.

5.4.1 格子点数の指定

既に述べたように、軸対称 2 次元計算は、経度方向の格子点数を 1 にすることで実現している。経度方向の格子点数は、gridset_nml namelist ブロックにより、下のように指定する.

```
&gridset_nml
...
imax = 1 ! 経度格子点数.
! Number of grid points in longitude
...
```

5.5 軸対称 2 次元計算の実行

軸対称2次元計算の実行方法は、3次元モデルの実行方法と全く同じである.詳細は、「ごくらくDCPAM5」(http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/doc/tutorial/gokuraku/)を参照すること.

第6章 並列計算を行うには

6.1 はじめに

DCPAM5 は, MPI (Message Passing Interface) を用いて並列化されている ¹. この章では, DCPAM5 を用いた並列計算の実行方法について述べる.

6.2 DCPAM5の MPI 並列化の概要

並列計算のための準備と実行方法について述べる前に, DCPAM5 での MPI 並列 実装の概要について簡単に説明しておく.

6.2.1 分割方法

DCPAM5の MPI 並列化においては、全球の格子点を緯度方向に分割する 2 . つまり、各 MPI プロセスは、ある緯度帯の経度-緯度(帯)-高度の 3 次元データを保持しており、必要に応じて MPI ライブラリを用いて通信を行う。緯度方向の分割方法は、現在の DCPAM5 が移流計算に用いている ispack の MPI 並列化の方法に従っている。例えば、 3 742 の水平解像度で、 4 並列で計算する場合、各プロセスは以下の

¹ DCPAM5 の移流計算においてスペクトル変換に用いている ispack が OpenMP を用いて並列化されているため,移流計算部分は OpenMP での並列計算が可能である. しかし,他の部分はOpenMP 並列に対応していないため,OpenMP での並列計算は実用的ではないだろう.

 $^{^2}$ ここでは実空間の分割についてのみ述べる. 現在の DCPAM5 では, 移流の計算にスペクトル法を用いており, 波数空間のデータの保有方法・分割方法については別途説明が必要であるが, ここでは省略する.

緯度帯のデータを保持する 3,4.

process 0 : $-20.9^{\circ} \le \phi \le 20.9^{\circ}$,

process 1: $-43.3^{\circ} \le \phi \le -23.7^{\circ}$, $23.7^{\circ} \le \phi \le 43.3^{\circ}$,

process 2: $-65.6^{\circ} \le \phi \le -46.0^{\circ}$, $46.0^{\circ} \le \phi \le 65.6^{\circ}$,

process 3: $-87.9^{\circ} \le \phi \le -68.4^{\circ}$, $68.4^{\circ} \le \phi \le 87.9^{\circ}$.

分割方法の詳細については、ispack の文書を参照すること.

6.2.2 入出力

現在の DCPAM5 においては, 入出力は各プロセスごとに行っている. したがって, 入力データは各プロセス用に準備する必要がある. 同様に, 出力データも各プロセスごとに別のファイルに分割されているため, 必要に応じてそれらのデータを統合する必要がある.

この時, DCPAM5の入出力ファイル名には MPI のプロセス番号を含めており, ファイル名は *_rank000000.nc, *_rank000001.nc, *_rank0000002.nc, ... の書式となる ⁵.

ただし、設定ファイル (実行時の namelist ファイル) でのファイル名の指定には、プロセス番号 $_{\rm rank}$ 000000, $_{\rm rank}$ 000001, $_{\rm rank}$ 000002, ... の部分は含めず、例えば、初期値ファイル・リスタートファイルの名前は、設定ファイルにおいて下のように指定する.

process 0 : 1.4°S/N, 4.2°S/N, 7.0°S/N, 9.8°S/N, 12.6°S/N, 15.3°S/N, 18.1°S/N, 20.9°S/N,

process 1 : 23.7°S/N, 26.5°S/N, 29.3°S/N, 32.1°S/N, 34.9°S/N, 37.7°S/N, 40.5°S/N, 43.3°S/N,

process 2 : 46.0° S/N, 48.9° S/N, 51.6° S/N, 54.4° S/N, 57.2° S/N, 60.0° S/N, 62.8° S/N, 65.6° S/N.

process 3 : 68.4°S/N, 71.2°S/N, 73.9°S/N, 76.7°S/N, 79.5°S/N, 82.3°S/N, 85.1°S/N, 87.9°S/N.

³ 実際に保持される格子点の緯度は下のようになる.

 $^{^4}$ プロセス番号は 0 から始まる. これは MPI の決まり.

⁵ この書式は gtool の決まり.

```
&restart_file_io_nml
   OutputFile = 'init_T21L20.nc'
/
```

このとき, それぞれのプロセスにおいて, 初期値ファイル・リスタートファイルの名前は, init_T21L20_rank000000.nc, init_T21L20_rank000001.nc, init_T21L20_rank000002.nc, ... と解釈される.

6.3 コンパイル

6.3.1 必要なソフトウェアの準備

DCPAM5の並列計算のためには、以下のライブラリが必要である、

- MPI ライブラリ、
- MPI コンパイラでコンパイルした ispack.
- MPI コンパイラでコンパイルした gtool5,
- MPI コンパイラでコンパイルした spml.

MPI ライブラリのコンパイル, および ispack, gtool5, spml の MPI コンパイラを用いたコンパイルの詳細は、各ライブラリの文書を参照すること.

6.3.2 コンパイル時の注意

コンパイルの基本的な方法は逐次版と同じであり、詳細は、「DCPAM5 インストールガイド」(http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/INSTALL.htm) を参照すること. ただし、下の点に注意すること.

- コンパイラとして MPI コンパイラ (例えば mpif90) を用いる,
- MPI コンパイラでコンパイルした ispack, gtool5, spml を用いる,
- DCPAM5 コンパイル時の configure のオプションに --enable-mpi を指定する.

6.4 並列計算の実行

計算の実行の手順は、逐次版と同じく、

- 初期値の準備、
- 実験用データの準備 (例えば, 海表面温度, 地形, オゾンの分布のデータのことを意味する),
- 実験の実行,

である. ただし, 既に述べたように, 入力ファイルはプロセスごとに分割されている必要がある. ここでは, まず Held and Suarez (1994) が提案した力学コア実験を例として取り上げ, 実行方法について述べる 6 .

基本的な方法は逐次版と同じであり、「ごくらく DCPAM5」(http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/doc/tutorial/gokuraku/)の項目を参照すること. Held and Suarez (1994) の実験においては、初期値を用意し、実行すればよい. 初期値は下のように用意する.

% mpiexec -n N ./init_data -N=init_data_hs94_T21L20.nml

ここで、N はプロセス数である. これにより、初期値ファイル init_T21L20_rank000000.nc, init_T21L20_rank000001.nc, init_T21L20_rank000002.nc, ... が生成される.

次に、下のように実行する.

% mpiexec -n N ./dcpam_main -N=dcpam_hs94_T21L20.nml

なお、DCPAM5で用意してある初期値生成プログラム、init_data、や、惑星表面温度データ生成ブログラム、sst_data、を用いて入力ファイルを用意する際には、上記のように、それぞれをmpiexecを用いて実行することで、プロセスごとのデータファイルを生成することができる。その他のデータファイルに関しては、別途プロセスごとに分割する必要がある。

 $^{^6}$ MPI を用いて並列化されたプログラムの実行方法の一般的な説明・詳細な説明については MPI ライブラリの文書を参照すること. ここで示す方法がどの程度一般的であるかはわからない (yot, 2011/09/30).

また, 実行により得られる結果は, 上記のように, プロセスごとに分割されている. 必要に応じて統合する必要がある.

6.5 入出力データの分割と統合

入出力データの分割と統合のためにプログラムを用意している. ただし, これらのプログラムは, 今のところ DCPAM5 には付属していない. (今のところ) 以下の場所からダウンロードすることができる.

http://www.gfd-dennou.org/library/dcpam/related-program/

6.5.1 入力データの分割

入力データの分割のためにプログラム (util_split) を用意している. 使い方については、当該プログラムに付属する README を参照すること.

6.5.2 出力データの統合

出力データの統合のためにプログラム (util_merge) を用意している. 使い方については、当該プログラムに付属する README を参照すること.

付 録 A namelist 変数一覧 (20110615 版)

この章では DCPAM5(20110615 版) の namelist 変数のリストとそのデフォルト値をまとめておく. 数値計算実行時に実際に設定された値を調べるには、出力されるログを参照するのが確実な方法である.

表 A.1: albedo_Matthews_nml の namelist 変数

変数名	デフォルト値	意味
flag_annual_mean	.false.	年平均のアルベド使用のフラグ
OceanAlbedo	0.1d0	海洋のアルベド

表 A.2: auxiliary_nml の namelist 変数

変数名	デフォルト値	意味
RefPress	1.0d5	基準気圧

表 A.3: axesset_nml の namelist 変数

変数名	デフォルト値	意味
OMPNumThreads	1	OpenMP での最大スレッド数.
Sigma	-999.0d0	sigma レベル (半整数)
Depth	-999.0d0	地下の鉛直層境界
$flag_generate_sigma$.false.	鉛直層数の内部生成のためのフラグ
LonInDeg	0.0 ₋ DP	1次元モデルの場合の経度 [degree]
LatInDeg	0.0 ₋ DP	1次元モデルの場合の緯度 [degree]

表 A.4: bucket_model_nml の namelist 変数

変数名	デフォルト値	意味
FlagBucketModel	.false.	バケツモデル on/off
SoilMoistCritAmnt	1.0d3 * 0.15d0	土壌が保持できる水分量の上限値
Soil Moist Crit Amnt for Evap Eff	1.0d3 * 0.15d0 * 0.75d0	地表湿潤度を 1 とする閾値
${\bf Flag Bucket Model Snow}$.false.	バケツモデル 雪の扱い on/off

表 A.5: check_prog_vars_nml の namelist 変数

変数名	デフォルト値	意味
VelMin	-300.0_DP	風速最小値
VelMax	300.0_DP	風速最大値
TempMin	50.0_DP	温度最小値
TempMax	350.0 ₋ DP	温度最大值

表 A.6: co2_phase_change_nml の namelist 変数

変数名	デフォルト値	意味
FlagUse	.false.	使用フラグ

表 A.7: composition_nml の namelist 変数

変数名	デフォルト値	意味
ncmax	1	微量成分の数
Names (1)	'QVap'	成分の変数名
LongNames(1)	'specific humidity'	成分の名前
FlagAdv	.true.	成分の移流フラグ

112	[半径 [m]	s角速度 [s-1]	7加速度 [m s-2]	貴大気の定圧比熱 [J kg−1 K−1]	閏大気の平均分子量 [kg mol-1]	指成分 (水) の定圧比熱 [J kg−1 K	特成分の平均分子量 [kg mol-1]	凝結の潜熱 [J kg-1]
意味	路性	回車	重力	乾燥	乾燥	凝約	凝約	凝約
デフォルト値 意味	6.371e6_DP	$2.0 \text{-DP} * \text{PI} \; / \; (\; 60.0 \text{-DP} \; * \; 60.0 \text{-DP} \; * \; 23.9345 \text{-DP} \;)$	9.8_DP	1004.6_DP	28.964e-3_DP	1810.0_DP	18.01528e-3_DP	2.5e0DP
変数名	RPlanet	Omega	Grav	CpDry	MolWtDry	CpWet	MolWtWet	LatentHeat
			変数名 デフォルト値 意味 RPlanet 6.371e6_DP 惑星半径 [m] Omega 2.0_DP * PI / (60.0_DP * 60.0_DP * 23.9345_DP) 回転角速度 [s-1]		デフォルト値 6.371e6_DP 2.0_DP * PI / (60.0_DP * 60.0_DP * 23.9345_DP) 9.8_DP 1004.6_DP	6.371e6_DP 2.0_DP * PI / (60.0_DP * 60.0_DP * 23.9345_DP) 9.8_DP 1004.6_DP 28.964e-3_DP	6.371e6.DP 6.371e6.DP 2.0.DP * PI / (60.0.DP * 60.0.DP * 23.9345.DP) 9.8.DP 1004.6.DP 28.964e-3.DP 1810.0.DP	6.371e6_DP 6.371e6_DP 2.0_DP * PI / (60.0_DP * 60.0_DP * 23.9345_DP) 9.8_DP 1004.6_DP 28.964e-3_DP 1810.0_DP 18.01528e-3_DP

表A	表 A.9: constants_snowsearce_nml 0 namelist 愛數	-nml の namelist 変数
変数名	デフォルト値	意味
ThresholdSurfSnow	0.1d0 * 1.0d3 * 0.01d0 地表の雪のしきい値	地表の雪のしきい値
SnowAlbedo	0.7d0	雪のアルベド
TempCondWater	273.15d0	水の凝結温度
SealceVolHeatCap	1.946	海氷の単位体積当たりの比熱 [J m-3 F
SealceThermCondCoef	2.2d0	海氷の熱伝導率 [M m-1 K-1]
SealceThreshold	0.5d0	海氷のしきい値
SealceThickness	2.0d0	海米の厚さ
TempBelowSealce	273.15d0 - 2.0d0	海氷の下の温度
Sealce Albedo	0.540	海米のアルベド

	衣 A.10: cumulus_adjust_nml の namelist 奚欽	
変数名	デフォルト値	意味
CrtlRH	0.990_DP	臨界相対湿度
ItrtMax	10	インテレーション回数
TempSatMax(1:ItrtMax)	(/ 0.01, 0.02, 0.02, 0.05, 0.05, 0.10, 0.10, 0.20, 0.20, 0.40 /) 不安定の許容誤差	不安定の許容誤差

	KA.	及 A.11: dcpam_main_mm の namelist 変数
変数名	デフォルト値 意味	意味
DynMode	'HSPLVAS83'	'HSPLVAS83' 力学過程の選択:水平スペクトル,鉛直差分なし (Arakawa and Suarez, 1983
PhysMode	'FullPhysics'	物理過程の選択:物理過程フルセットを使用
RadModel	'DennouAGCM $'$	DennouAGCM' 放射モデルの選択:電脳倶楽部 AGCM5 標準放射モデル
${ m PhysImpMode}$	'1LayModel'	物理過程解法の選択:1層モデル
FlagVerticalFilter	.false.	鉛直フィルタ使用のフラグ

衣 A.12: dry_conv_adjust_nml の namelist 変数	値 意味	臨界相対湿度	インドレーション回数	調節を行う基準 (湿潤静的エネルギーの差の温度換算値)	使用フラグ
A.12: dry_0	デフォルト値	1.0d0	10	0.040	.true.
衣 A.12:	数名	CrtlRH	ItrtMax	AdjustCriterion(1:ItrtMax)	FlagUse

表 A.13: dryconv_adjust_nml O namelist 変数

	意味	乾燥対流調節使用フラグ	インドレーション回数	3 /) 不安定の許容誤差
女 A.13. ulyconv-aujust-min の mamenst 多数	デフォルト値	.true.	10	(/0.01,0.02,0.02,0.05,0.05,0.05,0.10,0.10,0.20,0.20,0.40/) 不安定の許容誤差
	変数名	flag_dryconv_adjust	ItrtMax	TempSatMax(1:ItrtMax)

	表 A.14: dyn	表 A.14: dynamics_hspl_vas83_nml O namelist 変数
変数名	デフォルト値 意味	意味
TimeIntegScheme	'Semi-implicit'	時間積分法:セミインプリジット法
HDOrder	∞	超粘性の次数
HDEFoldTimeValue	8640.	最大波数に対する e-folding time. 負の値を与えると, 水平拡散係数はゼロ
${ m HDEFoldTimeUnit}$	'sec'	最大波数に対する e-folding time の単位.
FlagSpongeLayer	.false.	スポンジ層適用のフラグ
FlagSpongeLayerforZonalMean	.false.	
FlagSpongeLayerforHeat	.false.	
SLEFoldTimeValue	86400.0d0	スポンジ層の最上層における減衰時定数
SLEFoldTimeUnit	'sec'	SLEFoldTimeValue の単位
SLOrder	П	スポンジ層の減衰係数の sigma 依存性のオーダ
SLNumLayer	kmax	スポンジ層が適応されるモデル上端からの層の数
RefTemp	300.	基準温度
FlagDivDamp	.false.	
DivDampPeriodValue	2.0_DP	
${ m DivDampPeriodUnit}$	'day'	
${ m FlagMassFixer}$.true.	質量補正のフラグ
${ m FlagMassHorDifCor}$.false.	水平拡散の補正のフラグ

	意味	出力データファイルの表題	データファイル作成の手段	データファイルを最終的に変更した組織/個
表 A.15: fleset_nml の namelist 変数	デフォルト値	'dcpam5 test run'	'dcpam5 $Name: (http://www.gfd-dennou.org/library/dcpam)$	'GFD Dennou Club (http://www.gfd-dennou.org)'
	変数名	FileTitle	FileSource	FileInstitution

表 A.16: gridset_nml の namelist 変数

	7X 11.10.	Situsco_min •> namenso & &
変数名	デフォルト値	意味
imax	1	軸対称計算の場合の経度格子点数
imax	1	SJPACK を使った軸対称計算の場合の経度格子点数
imax	32	上記以外の場合の経度格子点数
jmax	imax / 2	緯度格子点数
jmax_global	-999	緯度格子点数 (全球)
kmax	5	鉛直層数
nmax	(imax - 1) / 3	最大全波数
kslmax	0	地下の鉛直層数
	1	•

表 A.17: held_suarez_1994_nml の namelist 変数

変数名	デフォルト値	意味	
SigmaB	0.7_DP		
${\bf kfTimeScaleInDay}$	1.0_DP		
kaTimeScaleInDay	40.0_DP		
ksTimeScaleInDay	4.0_DP		

	≠ A 10	• • • • • • • • • • • • • • • • • • • •	I (T)	1. 大学
変数名	1	initial_data_nml フォルト値	l O na	melist 変数 意味
Pattern	-	pance of Temper	ature'	初期値データのパターン
	I	-		I O IFI A
		I .		perature' の場合
	変数名	デフォルト値 OKO O DD	意味	<u></u>
	TempAvr	250.0_DP		平均値 55年 5 平均 体
	PsAvr	1.0e+5_DP		面気圧平均値 5.45/cf
	QVapAvr	1.0e-10_DP		平均值 0 本平見は
	Ueq	0.0_DP	亦迫_	上の東西風速
	Patter	rn = 'agcm 5.3 c		の場合
	変数名	デフォルト値	意味	
	TempAvr	250.0_DP	温度	P均值 P均值
	PsAvr	1.0e+5_DP	地表面	面気圧平均値
	QVapAvr	1.0e-10_DP	比湿፯	平均值
	Ueq	0.0_DP	赤道。	上の東西風速
	Pattern :	= 'sugiyama et a	al. (200	08)' の場合
	変数名	デフォルト値	意味	,
	TempAvr	490.0 ₋ DP	温度	平均値
	PsAvr	$3.0e+6_DP$	地表	面気圧平均値
	QVapAvr	6.11641e-3_DP	比湿	平均値
	Ueq	0.0_DP	赤道	上の東西風速
	Pattern	= 'polvani et al	l. (200 ₄	4)' の場合
	変数名	 デフォルト値	意味	,
	TempAvr	0.0_DP	温度立	平均値
	PsAvr	1.0e+5_DP	地表面	面気圧平均値
	QVapAvr	0.0_DP	比湿፯	平均值
	Ueq	0.0_DP	赤道	上の東西風速
		Pattern = 'venu	s' の場	合
	変数名	デフォルト値	意味	• •
	TempAvr	0.0_DP	温度3	
	PsAvr	90.0e+5_DP	地表面	面気圧平均値
	QVapAvr	0.0_DP		平均值
	Ueq	0.0_DP	赤道	上の東西風速
	$\mathbf{D}_{\mathbf{o}}$	ttern = '1-d pro	flo' Φ	堪 会
	та 変数名	ltern = 1-d pro デフォルト値	me の 意味	7 00 口
	TempAvr	1.0e+100_DP		 P均值
	Tomburi	1.00 100_101	11111/2	1 · 4 lb-

地表面気圧平均値

赤道上の東西風速

比湿平均值/03/04(地球流体電脳倶楽部)

 $1.0e + 100_DP$

 0.0_DP

 0.0_DP

PsAvr

Ueq

namelist/namelist-20 QWalp5Aexr

らくらく DCPAM5

lの namelist 変数	意味	臨界相対湿度
A.19: lscond_nml O r	デフォルト値	1.0_{-} DP
表 A	数名	tlRH

インテレーション回数

使用フラグ

ItrtMax FlagUse

調節を行う基準 (湿潤静的エネルギーの差の温度換算値) 表 A.20: moist_conv_adjust_nml O namelist 変数 インテレーション回数 臨界相対湿度 使用フラグ 愈栞 デフォルト値 1.0d00.0d0.true. 10 AdjustCriterion(1:ItrtMax) ItrtMax CrtlRH

表 A.21: phy_implicit_sdh_nml の namelist 変数変数名 デフォルト値 意味 SOHeatCapacity 4.187d3 * 1.0d3 * 60.0d0 スラブオーシャンの比熱

らく	ら	=	E T	1D /	λλη	· 5							隔の数値	隔の単位										11	
	意味	長波フラックスを計算する時間間隔の数値	長波フラックスを計算する時間間隔の単層	長波バンド数	水の吸収係数	空気の吸収係数	バンドウェイト	水の吸収係数	空気の吸収係数	バンドウェイト	光路長のファクタ	太陽定数	短波 (日射) フラックスを計算する時間間隔の数値	短波(日射)フラックスを計算する時間間隔の単位	短波バンド数	水の吸収係数	空気の吸収係数	バンドウェイト	水の吸収係数	空気の吸収係数	バンドウェイト	散乱の sec zeta	大気アルベド	入力するリスタートデータのファイル名1	出力するリスタートデータのファイル名
表 A.22: rad_DennouAGCM_nml O_namelist 変数	デフォルト値	$3.0_{ m DP}$	hrs.'	4	-999.9_DP	-999.9_DP	-999.9_DP	(/ 8.0_DP, 1.0_DP, 0.1_DP, 0.0_DP /)	$(/ 0.0_DP, 0.0_DP, 0.0_DP, 5.0e-5_DP /)$	(/ 0.2 DP, 0.1 DP, 0.1 DP, 0.6 DP /)	1.5_DP	1380.0_DP	1.0_DP	hrs.'	1	-999.9 DP	-999.9_DP	-999.9_DP	(/ 0.002_DP /)	$(/ 0.0_{-}$ DP $/)$	$(/ 1.0_{-}$ DP $/)$	1.66_DP	$0.2.\mathrm{DP}$	"	$'$ rst_rad.nc $'$
	変数名	DelTimeLongValue	DelTimeLongUnit	LongBandNum	LongAbsorpCoefQVap	LongAbsorpCoefDryAir	LongBandWeight	LongAbsorpCoefQVap (1:LongBandNum)	LongAbsorpCoefDryAir (1:LongBandNum)	LongBandWeight (1:LongBandNum)	LongPathLengthFact	SolarConst	DelTimeShortValue	DelTimeShortUnit	ShortBandNum	ShortAbsorpCoefQVap	ShortAbsorpCoefDryAir	ShortBandWeight	ShortAbsorpCoefQVap (1:ShortBandNum)	ShortAbsorpCoefDryAir (1:ShortBandNum)	ShortBandWeight (1:ShortBandNum)	ShortSecScat	ShortAtmosAlbedo	RstInputFile	RstOutputFile

表 A.23: rad_SL09_nml の namelist 変数

変数名	デフォルト値	意味
SWOptDepAtRefPress	3.0_DP	
SWRefPress	3.0d5	
SWOrd	1.0 ₋ DP	
LWOptDepAtRefPress	80.0_DP	
LWRefPress	3.0d5	
LWOrd	2.0 ₋ DP	
SolarConst	50.7_DP	

表 A.24: rad_dcpam_EV2_nml の namelist 変数

変数名	デフォルト値	意味
VMRCO2	382.0d-6	

表 A.25: rad_dcpam_E_LW_V2_3_nml の namelist 変数

変数名	デフォルト値	意味	
FlagHighAlt	.false.		
CloudWatREff	10.0d-6		
CloudIceREff	10.0d-6		
Del Time Calc Trans Value	3.0		
Del Time Calc Trans Unit	'hrs'		
flag_save_time	.false.		

表 A.26: rad_dcpam_E_SW_V2_1_nml の namelist 変数

変数名	デフォルト値	意味	
FlagRayleighScattering	.true.		
SolarConst	1366.0 ₋ DP		
${\bf CloudWatREff}$	10.0d-6		
CloudIceREff	10.0d-6		

表 A.27: rad_dcpam_M_15m_nml の namelist 変数

変数名	デフォルト値	意味	
$rad15mkg_fn$	"./kg15m"		
rad15mint	925.0 ₋ DP		

表 A.28: rad_dcpam_M_NIR_nml の namelist 変数

変数名	デフォルト値	意味
FlagUse	.true.	

表 A.29: rad_dcpam_M_V1_nml の namelist 変数

変数名	デフォルト値	意味
SolarConst	1380.0_DP / 1.52_DP**2	
DOD067	0.0_DP	
${\bf DustVerDistCoef}$	0.01_DP	
2 450 . 612 160 6 661	0.01231	

惑星と中心の恒星との距離 (惑星の軌道長半径で規格化) 春分から測った近日点の経度 (近日点黄経)[degree] きの誤差の許容しきい値 継心近点角を計算するときの最大繰り返し時間 元期における惑星の経度 (黄経)[degree] 表 A.30: rad_short_income_nml O namelist 変数 季節変化なし入射フラグ لد 元期における時刻 (sec) 同期回転日射のフラグ 雑心近点角を計算する 年平均入射角の係数 年平均入射角の係数 赤緯の角度 [degree] 日平均入射フラグ 年平均入射フラグ 年平均入射の係数 年平均入射の係数 赤道傾斜角 元期日時 元期日時 元期日時 元期日時 元期日時 元期日時 離心率 デフォルト値 0.410_DP 0.590_DP 0.127_DP 0.183_DP 280.0_DP 23.5_{-} DP 0.0_{-} DP 0.0_{-} DP 1e-6_DP 0.0_DP 1.0_{-} DP -1.0_DP 0.0_DP false. .true. false. true. 20**ThreEccAnomalyError** PerpDistFromStarScldFlagRadSynchronous LonFromVEAtEpoch MaxItrEccAnomaly FlagDiurnalMean FlagAnnualMean PerLonFromVE FlagPerpetual TimeAtEpoch EpochMonth PerpDelDeg Eccentricity EpochHour Epoch Year ncomAlns ncomBIns ncomAZet IncomBZetEpochDay EpochMin EpochSec EpsOrb **麥数名**

表 A.31: rad_utils_nml の namelist 変数

変数名	デフォルト値	意味	
DiffFact	1.66_DP		

表 A.32: restart_file_io_nml の namelist 変数

変数名	デフォルト値	意味
InputFile	"	入力するリスタートデータのファイル名
OutputFile	'rst.nc'	出力するリスタートデータのファイル名
IntValue	1.0	リスタートデータの出力間隔 (数値)
${\rm Int}{\rm Unit}$	'day'	リスタートデータの出力間隔 (単位)

表 A.33: restart_surftemp_io_nml の namelist 変数

変数名	デフォルト値	意味
InputFile	"	入力するリスタートデータのファイル名
${\bf InputName}$	'SurfTemp'	入力するデータ名
OutputFile	'rst_sst.nc'	出力するリスタートデータのファイル名
IntValue	1.0	リスタートデータの出力間隔 (数値)
${\rm Int}{\rm Unit}$	'day'	リスタートデータの出力間隔 (単位)

表 A.34: set_1d_profile_nml の namelist 変数

変数名	デフォルト値	意味
InFileName	'data.nc'	入力ファイル名

表 A.35: set_O3_nml の namelist 変数

	F 1 - 1 - 0 0 1				
変数名	デフォルト値	意味			
FlagO3	.true.	オゾンがあるかどうかのフラグ			
Flag1D	.false.	ファイルから1次元プロファイルを読み込むかどうかのフラグ			
O3File	""	O3を設定するファイル名			

表 A.36: set_cloud_nml の namelist 変数

変数名	デフォルト値	意味
FlagCloud	.true.	雲の分布を考えるかどうかのフラグ
${\bf CloudLifeTime}$	3600.0 ₋ DP	雲水の寿命
CloudCover	0.5_DP	

表 A.37: sl09_diffusion_nml の namelist 変数

変数名	デフォルト値	意味
SigmaB	0.8_DP	
${\it kfTimeScaleInDay}$	20.0_DP	
FrictionLBLat	16.3_DP	
LBHeatFlux	5.7_DP	

表 A.38: surface_data_nml の namelist 変数

変数名	デフォルト値	意味
Pattern	'Hosaka et al. (1998)'	地表面データのパターン
SurfTemp	273.15_DP	地表面温度の基準値
Albedo	0.15_DP	地表面アルベド
HumidCoef	1.0 ₋ DP	地表湿潤度
RoughLength	1.0e-4_DP	地表粗度長
HeatCapacity	0.0 ₋ DP	地表熱容量
TempFlux	0.0 ₋ DP	地中熱フラックス
SurfCond	0	表状態 (0: 固定, 1: 可変)
SeaIceConc	0.0_DP	海氷面密度
${\bf Soil Heat Cap}$	2.1d6	土壌熱容量 [J K-1 kg-1]
${\bf Soil Heat Diff Coef}$	1.2d0	土壌熱伝導係数 [J m-3 K-1]

表 A.39: surface_flux_bulk_nml の namelist 変数

変数名	デフォルト値	意味
FlagConstBulkCoef	.false.	バルク係数一定値使用のフラグ
${\bf Flag Use Of Bulk Coef In Neutral Cond}$.false.	
ConstBulkCoef	0.0_DP	バルク係数一定値
VelMinForRi	0.01_DP	リチャードソン数用風最小値
VelMinForVel	0.01_DP	運動量用風最小値
${\bf VelMinForTemp}$	0.01 _DP	熱用風最小値
VelMinForQVap	0.01_DP	水蒸気用風最小値
VelMaxForVel	1000.0 ₋ DP	運動量用風最大値
VelMaxForTemp	1000.0 ₋ DP	熱用風最大値
$\operatorname{VelMaxForQVap}$	1000.0 ₋ DP	水蒸気用風最大値
VelBulkCoefMin	0.0_DP	uバルク係数最小値
TempBulkCoefMin	0.0 ₋ DP	Tバルク係数最小値
QVapBulkCoefMin	0.0_DP	qバルク係数最小値
VelBulkCoefMax	1.0_DP	uバルク係数最大値
TempBulkCoefMax	1.0 ₋ DP	Tバルク係数最大値
QVapBulkCoefMax	1.0 ₋ DP	qバルク係数最大値
${\bf FlagFixFricTimeConstAtLB}$.false.	
${\bf FricTime ConstAtLB}$	1.0d100	下部境界摩擦の時定数 [s]
LowLatFricAtLB	1.0d100	下部境界摩擦が働く最低緯度 [degree]
${\bf FlagFix Heat Flux At LB}$.false.	
HeatFluxAtLB	1.0d100	
${\it FlagFixMassFluxAtLB}$.false.	
${\it MassFluxAtLB}$	1.0d100	下部境界での質量フラックス (W m-2).

表 A.40: surface properties nml の namelist 変数

衣 A.40: surface_properties_nml の namelist 変数				
変数名	デフォルト値	意味		
SurfTempSetting	'generate_internally'	地表面温度の設定方法		
SurfTempFile	"	地表面温度のファイル名		
SurfTempName	"	地表面温度の変数名		
SeaIceSetting	'generate_internally'	海氷面密度の設定方法		
SeaIceFile	"	海氷面密度のファイル名		
SeaIceName	"	海氷面密度の変数名		
AlbedoSetting	'generate_internally'	地表アルベドの設定方法		
AlbedoFile	"	地表アルベドのファイル名		
AlbedoName	"	地表アルベドの変数名		
HumidCoefSetting	'generate_internally'	地表湿潤度の設定方法		
HumidCoefFile	"	地表湿潤度のファイル名		
HumidCoefName	"	地表湿潤度の変数名		
RoughLengthSetting	'generate_internally'	地表粗度長の設定方法		
RoughLengthFile	"	地表粗度長のファイル名		
RoughLengthName	"	地表粗度長の変数名		
HeatCapacitySetting	'generate_internally'	地表熱容量の設定方法		
HeatCapacityFile	"	地表熱容量のファイル名		
HeatCapacityName	"	地表熱容量の変数名		
TempFluxSetting	'generate_internally'	地中熱フラックスの設定方法		
TempFluxFile	"	地中熱フラックスのファイル名		
TempFluxName	,,	地中熱フラックスの変数名		
SurfCondSetting	'generate_internally'	地表面状態の設定方法		
SurfCondFile	"	地表面状態のファイル名		
SurfCondName	"	地表面状態の変数名		
SurfHeightSetting	'generate_internally'	地表面高度の設定方法		
SurfHeightFile	"	地表面高度のファイル名		
SurfHeightName	"	地表面高度の変数名		
SoilHeatCapSetting	'generate_internally'	土壌熱容量の設定方法		
SoilHeatCapFile	"	土壌熱容量のファイル名		
${\bf Soil Heat Cap Name}$	"	土壌熱容量の変数名		
SoilHeatDiffCoefSetting	'generate_internally'	土壌熱伝導率の設定方法		
SoilHeatDiffCoefFile	"	土壌熱伝導率のファイル名		
${\bf Soil Heat Diff Coef Name}$	"	土壌熱伝導率の変数名		

表 A.41: timefilter_asselin1972_nml の namelist 変数

変数名	デフォルト値	意味
FilterParameter	0.05_DP	タイムフィルターの係数

表 A.42: timeset_nml の namelist 変数

変数名	デフォルト値	意味
cal_type	'noleap'	暦の種類
$month_in_year$	-1	1年の月の数
$day_in_month(1:MaxNmlArySize)$	-1	1ヶ月のに数
hour_in_day	-1	1日の時間数
min_in_hour	-1	1時間の分数
sec_in_min	-1.0_DP	1分の秒数
DelTimeValue	30.0 ₋ DP	時間ステップ
DelTimeUnit	'min'	時間ステップの単位
flag_half	.false.	
RestartTimeValue	0.0 ₋ DP	リスタート開始時刻
RestartTimeUnit	'sec'	リスタート開始時刻の単位
InitialYear	2000	積分開始時刻の年
InitialMonth	1	積分開始時刻の月
InitialDay	1	積分開始時刻の日
InitialHour	0	積分開始時刻の時間
InitialMin	0	積分開始時刻の分
InitialSec	0.0	積分開始時刻の秒
${\bf Integ Period Value}$	-1.0	積分期間
IntegPeriodUnit	'sec'	積分期間の単位
EndYear	2000	積分終了時刻の年
EndMonth	1	積分終了時刻の月
EndDay	2	積分終了時刻の日
EndHour	0	積分終了時刻の時間
EndMin	0	積分終了時刻の分
EndSec	0.0	積分終了時刻の秒
${\bf PredictIntValue}$	1.0 ₋ DP	終了予想日時表示間隔
PredictIntUnit	'day'	終了予想日時表示間隔の (単位)
CpuTimeMoniter	.true.	CPU 時間計測のオンオフ

				_		
表	A 43:	vdiffusion	mv1974 nml	\mathcal{O}	namelist	変数

		14_IIIII V Hamenst XX
変数名	デフォルト値	意味
${\bf Flag Const Diff Coef}$.false.	
${\bf ConstDiffCoefM}$	0.0d0	
${\bf ConstDiffCoefH}$	0.0d0	
${\bf Square Vel Min}$	0.1	風二乗差最小値
BulkRiNumMin	- 100.	バルク リチャードソン数最小値
MixLengthMax	300.	最大混合距離
TildeShMin	0.	tildeS_h 最小值
TildeSmMin	0.	$tildeS_m$ 最小値
VelDiffCoefMin	0.1	Dvectu 拡散係数最小値
${\bf Temp Diff Coef Min}$	0.1	T拡散係数最小値
${\bf QMixDiffCoefMin}$	0.1	q拡散係数最小値
VelDiffCoefMax	10000.	Dvectu 拡散係数最大値
${\bf Temp Diff Coef Max}$	10000.	T拡散係数最大値
${\bf QMixDiffCoefMax}$	10000.	q拡散係数最大値
MYLv2ParamA1	0.92	
MYLv2ParamB1	16.6	
MYLv2ParamA2	0.74	
MYLv2ParamB2	10.1	
MYLv2ParamC1	0.08	
	•	•

表 A.44: venus_simple_forcing_nml の namelist 変数

変数名	デフォルト値	意味
SurfFrictionTimeConstInEarthDay	30.0d0	
FlagConstNCC	.false.	
ConstNCCInEarthDay	30.0d0	

表 A.45: vertical_filter_nml の namelist 変数

変数名	デフォルト値	意味
FilterParameter	0.1_DP	鉛直フィルターの係数

付録B

使用上の注意とライセンス 規定

CREDITS¹ を参照ください.

 $^{{}^{1}} http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/CREDITS$