dcpam5-primitive 支配方程式系とその離散化

地球流体電脳倶楽部

2010 年 9 月 1 日 (dcpam5-primitive)

目 次

第1章	この文書について	1
1.1	この文書について	1
第2章	座標系・変換公式	2
2.1	はじめに	2
2.2	座標系	2
2.3	水平格子点	2
2.4	鉛直レベル	3
2.5	水平スペクトル	4
	2.5.1 水平スペクトルの基底の導入	4
	2.5.2 波数切断	5
	2.5.3 離散化したスペクトルの基底の直交性	6
	2.5.4 格子点値とスペクトルの係数との変換法	6
	2.5.5 内挿公式	7
	2.5.6 空間微分の評価	7
2.6	参考文献	8
第3章	力学過程	9
3.1	はじめに	9
3.2	数理表現....................................	9
	3.2.1 連続の式	9
	3.2.2 静水圧の式	10
	3.2.3 運動方程式	10
	3.2.4 熱力学の式	10
	3.2.5 境界条件	13
	3.2.6 水平拡散層	13
3.3	離散表現: 鉛直離散化	14
	3.3.1 連続の式, 鉛直速度	14
		14
	3.3.3 運動方程式	15
	3.3.4 熱力学の式	16
	離散表現: 水平離散化	17

		3.4.1 連続の式	17
		3.4.2 運動方程式	18
		3.4.3 熱力学の式	19
	3.5	離散表現: 時間離散化	19
		3.5.1 力学過程の方程式系の時間差分式	20
	3.6	参考文献	24
笙	4章	乱流過程 2	26
713	4.1		26
	1.1		27 27
			21 28
	4.2		30
	7.2		31
			32
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33
			34
	4.3		36
	4.0	参与人間	JU
第	5章	熱収支を統合した連立方程式の構成	37
	5.1	離散表現	37
		5.1.1 惑星表面に 1 層モデルを用いる場合	37
什	全是 ∧	惑星大気の物理定数 3	39
1.7			3 9
	11.1	20257人X(02170)主人C gX	90
付	録B	座標系・変換公式に関する解説	1 0
	B.1	球面調和函数	40
		B.1.1 定義と性質	41
		B.1.2 球面調和函数の空間微分	45
		B.1.3 コメント — 全波数について	45
		B.1.4 グラフ	47
	B.2	微分公式, GCM の変数の微分関係式	48
		B.2.1 スカラー量の微分	48
		B.2.2 ベクトル量の微分	48
		B.2.3 発散	49
		B.2.4 渦度	49
		B.2.5 速度ポテンシャル, 流線関数と (u,v)	49
	B.3		49
			50
		B.3.2 Legendre 函数の 零点	

	B.4	積分評価	51
		B.4.1 Gauss の台形公式	51
		B.4.2 Gauss-Legendre の公式	52
	B.5	球面調和函数の離散的直交関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56
	B.6	スペクトルの係数と格子点値とのやり取り	58
		B.6.1 スペクトルの係数と格子点値との値のやり取り	59
		B.6.2 スペクトルの係数と格子点値との値のやり取り~東西微分編	59
		B.6.3 スペクトルの係数と格子点値との値のやり取り~南北微分編	60
		$B.6.4$ χ,ψ のスペクトルの係数から速度の格子点値への変換 \dots	62
	B.7	スペクトルの係数同士の関係	63
	B.8	波数切断	64
		B.8.1 波数切断の仕方	64
		B.8.2 切断波数の決め方	66
	B.9	スペクトルモデルと差分モデル	71
	B.10	参考文献	72
4	緑 C	使用上の注意とライヤンス規定	73

第1章 この文書について

1.1 この文書について

この文書は、地球流体電脳倶楽部で開発中の大気大循環モデル、dcpam、バージョン 5の力学部分抽出した primitive モデル dcpam5-primitive の支配方程式系およびその離散化手法を解説したものである.

現状では、本文書の内容とソースコードとで一致しない箇所もあることに注意されたい.

第2章 座標系・変換公式

2.1 はじめに

ここでは、座標系および水平格子点、鉛直レベルの取り方を記す. さらに、力学過程の時間積分において使用する水平スペクトルを定義し、格子点値とスペクトルの係数との変換則を記す.

2.2 座標系

座標系は、水平方向には緯度 φ 、経度 λ を、鉛直方向には $\sigma\equiv \frac{p}{p_s}$ をとる.ここで p は気圧、 p_s は地表面気圧である.

座標の取り方に関する詳細は別紙『支配方程式系の導出に関する参考資料¹』の『座標系の取り方』を参照せよ.

2.3 水平格子点

水平方向の格子点の位置は、Gauss 緯度 (格子点数 J 個 2)、等間隔の経度 (同 I 個) である.

● Gauss 緯度

 $^{^1}$ http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_current/doc/derivation/htm/derivation.htm 2 以下, J は偶数とする. dcpam5-primitive では、(Gauss 緯度としてとる場合には) J は偶数でなければならない.

Gauss 緯度を J 次の Legendre 函数 $P_J(\sin\varphi)$ の零点 $\varphi_j(j=1,2,3,\cdots,J)$ として定義する. 順番としては, $\frac{\pi}{2} > \varphi_1 > \varphi_2 > \cdots > \varphi_J > -\frac{\pi}{2}$ とする³. なお以後, $\sin\varphi = \mu$ と書くことがある.

経度方向の格子点経度方向の格子点の位置を

$$\lambda_i = \frac{2\pi(i-1)}{I} \quad (i=1,2,\cdots,I)$$
 (2.1)

ととる.

2.4 鉛直レベル

Arakawa and Suarez (1983) のスキームを用いる。とり方は以下のとおりである 4 . 下の層から上へと層の番号をつける。整数レベルと半整数レベルを定義する 5 . 半整数レベルでの σ の値 $\sigma_{k-1/2}$ $(k=1,2,\cdots,K)$ を定義する。ここで、レベル $\frac{1}{2}$ は下端 $(\sigma=1)$ 、レベル $K+\frac{1}{2}$ は上端 $(\sigma=0)$ とする。整数レベルの σ の値 σ_k $(k=1,2,\ldots K)$ は次の式から求める。

$$\sigma_k = \left\{ \frac{1}{1+\kappa} \left(\frac{\sigma_{k-1/2}^{\kappa+1} - \sigma_{k+1/2}^{\kappa+1}}{\sigma_{k-1/2} - \sigma_{k+1/2}} \right) \right\}^{1/\kappa}.$$
 (2.2)

$$\left[\frac{d}{d\mu}\left\{(1-\mu^2)\frac{d}{d\mu}\right\} + J(J+1)\right]P_J(\mu) = 0$$

を満たす J 次多項式であり, $P_J(\mu)$ の零点は全て $-1<\mu<1$ にある. なお, Gauss 緯度は近似的には $\sin^{-1}\left(\cos\frac{j-1/2}{J}\pi\right)$ で与えられる.

 4 このス $\hat{\mathbf{r}}$ ームは次のような特徴をもつ. (2005/04/04 石渡: 始めの 4 つは不正確な表現かも)

- 全領域積分した質量を保存
- 全領域積分したエネルギーを保存
- 全領域積分の角運動量を保存
- 全質量積分した温位を保存
- 静水圧の式が local にきまる. (下層の高度が上層の温度に依存しない)
- ◆ 水平方向に一定の、ある特定の温度分布について、静水圧の式が正確になり、気圧傾度力が0 になる。
- 等温位大気はいつまでも等温位に留まる

⁵物理量により、整数レベルで定義されるものと、半整数レベルで定義されるものがある.

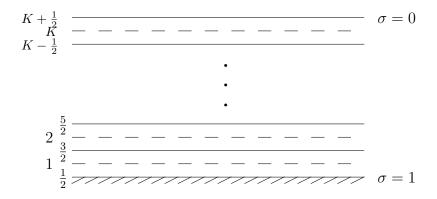
 $^{^3}J$ 次の Legendre 函数 $\overline{P_J(\mu)}$ は

ここで $\kappa=rac{R}{C_r},\ R$ は乾燥空気の気体定数, C_p は乾燥空気の定圧比熱である 6 . ま た、レベル加重 $\Delta \sigma$ は以下のように定義される.

$$\Delta \sigma_{k} \equiv \sigma_{k-1/2} - \sigma_{k+1/2}, \qquad (1 < k < K)$$

$$\Delta \sigma_{1/2} \equiv \sigma_{1/2} - \sigma_{1} = 1 - \sigma_{1},$$

$$\Delta \sigma_{K+1/2} \equiv \sigma_{K} - \sigma_{K+1/2} = \sigma_{K}.$$
(2.3)



2.5 水平スペクトル

ここでは、力学過程の時間積分での計算において用いるスペクトルを導入し、格子 点での値とスペクトルの係数とのやり取りの公式を示す.

2.5.1 水平スペクトルの基底の導入

格子点上の点で定義された物理量は、格子点上でのみ値を持つ(以下このことを、 「離散化した」と呼ぶ) 球面調和函数の和の形で表現される. また, 各格子点におけ る物理量の水平微分を評価するために $,(\lambda,\varphi)$ 面で定義された(以下,「連続系の」と呼ぶ) 球面調和函数系で内挿して得られる関数を用いる. ここではその球面調和 函数を導入する、なお、簡単のために、連続系の球面調和函数のみを陽に記す、離 散系の球面調和函数は連続系の球面調和函数に格子点の座標を代入したものから 構成される.

⁶いずれも定数としている.

 (λ,φ) 面において、球面調和函数 $Y_n^m(\lambda,\varphi)$ は次のように定義される.

$$Y_n^m(\lambda, \varphi) \equiv P_n^m(\sin \varphi) \exp(im\lambda), \tag{2.4}$$

ただし, m,n は $0 \le |m| \le n$ を満たす整数であり, $P_n^m(\sin \varphi)$ は 2 で規格化された Legendre 函数・陪函数

$$P_n^m(\mu) \equiv \sqrt{\frac{(2n+1)(n-|m|)!}{(n+|m|)!}} \frac{(1-\mu^2)^{\frac{|m|}{2}}}{2^n n!} \frac{d^{n+|m|}}{d\mu^{n+|m|}} (\mu^2 - 1)^n, \tag{2.5}$$

$$\int_{-1}^{1} P_n^m(\mu) P_{n'}^m(\mu) d\mu = 2\delta_{nn'}$$
(2.6)

である. なお, P_n^0 を P_n とも書く. また $\sin \varphi = \mu$ であることを再掲しておく.

2.5.2 波数切断

波数切断は三角形切断 (T) または平行四辺形切断 (R) とする. M,N は三角形切断,平行四辺形切断のときについてそれぞれ以下のとおりである. ただし,切断波数を N_{tr} とする.

● 三角形切断の場合

$$M=N_{tr},\ N=N_{tr}\ ,\ \ I\geq 3N_{tr}+1,\$$
かつ $J\geq \frac{3N_{tr}+1}{2}.$ 自由度は、 $(N_{tr}+1)^2$ である.

● 平行四辺形切断の場合

$$M=N_{tr},\ N(m)=N_{tr}+|m|\ ,\ I\geq 3N_{tr}+1,\$$
かつ $J\geq 3N_{tr}+1.$
自由度は $,\ (2N_{tr}+1)(N_{tr}+1)$ である.

よく用いられる値の例としては、T42 の場合 $I=128,\ J=64,\ R21$ の場合 $I=64,\ J=64$ がある.

球面調和函数と波数切断に関する詳細は、第B.1節および第B.8節を参照せよ.

2.5.3 離散化したスペクトルの基底の直交性

離散化した Legendre 函数と三角関数は次の直交条件を満たす7.

$$\sum_{j=1}^{J} P_n^m(\mu_j) P_{n'}^m(\mu_j) w_j = \delta_{nn'}, \tag{2.7}$$

$$\sum_{i=1}^{I} \exp(im\lambda_i) \exp(-im'\lambda_i) = I\delta_{mm'}.$$
(2.8)

ここで
$$w_j$$
 は Gauss 荷重で, $w_j \equiv \frac{(2J-1)(1-\sin^2\varphi_j)}{\left\{JP_{J-1}(\sin\varphi_j)\right\}^2}$ である.

2.5.4 格子点値とスペクトルの係数との変換法

物理量 A の格子点 (λ_i, φ_j) (ただし $i=1,2,\cdots,I$. $j=1,2,\cdots,J$) での値 $A_{ij}=A(\lambda_i, \varphi_j)$ とスペクトル空間での Y_n^m (ただし $m=-M,\cdots,M$. $n=|m|,\cdots,N(m)$) の係数 \tilde{A}_n^m とは次の変換則に従う 8 .

$$A_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{A}_n^m Y_n^m(\lambda_i, \varphi_j), \qquad (2.9)$$

$$\tilde{A}_{n}^{m} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} A_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}.$$
(2.10)

A が実数であることを用いると, $\left\{ ilde{A}_n^m \exp(im\lambda)
ight\}^* = ilde{A}_n^{-m} \exp(-im\lambda)$ なので, m については負でない整数の範囲で和をとることができる 9 . ここで, "*" は複素共役

⁷詳しくは第 B.5 節を参照せよ.

⁸正変換,逆変換時の係数は整合的に与えてさえいれば問題がない.

 $^{^9}$ さらに、実際の計算手続きとしては、 $P_n^m(\sin\varphi)$ が、n-m が 偶数 (even) の時 $\varphi=0$ について対称、n-m が 奇数 (odd) の時 $\varphi=0$ について反対称であることを考慮して演算回数を減らすことができる。 すなわち、 A_{ij} の計算では北半球のみについて南北対称成分 A_{ij}^{even} と反対称成分 A_{ij}^{odd} についてそれぞれ計算し、南半球については $Ai,J-j=A_{ij}^{even}-A_{ij}^{odd}$ とすればよい。また、 A_n^m の計算においては、その対称性、反対称性に基づいて $A_{i,j}+A_{i,J-j}$ または $A_{i,j}-A_{i,J-j}$ の一方を j について 1 から J/2 まで加えればよい。

を表す. ただし, A_n^m の定義を以下のように修正していることに注意せよ.

$$A_{ij} = \sum_{m=0}^{M} \sum_{n=m}^{N} \Re \tilde{A}_n^m Y_n^m(\lambda_i, \varphi_j), \tag{2.11}$$

$$\tilde{A}_{n}^{m} = \begin{cases} \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} A_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}, & m = 0, \quad m \leq n \leq N, \\ \frac{2}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} A_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}, & 1 \leq m \leq M, \quad m \leq n \leq N. \end{cases}$$

$$(2.12)$$

内挿公式 2.5.5

 (λ, φ) 空間で定義される物理量 $A(\lambda, \varphi)$ を格子点値 A_{ij} をもとに内挿する場合に は、変換公式を用いて A_{ij} から $ilde{A}_n^m$ を求めた上で、

$$A(\lambda, \varphi) \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{A}_{n}^{m} Y_{n}^{m}(\lambda, \varphi)$$
 (2.13)

として得る.

空間微分の評価 2.5.6

各格子点における空間微分値の評価は、内挿公式を用いて得た連続関数の空間微分 の格子点値で評価する.

λ 微分

$$\left(\frac{\partial f}{\partial \lambda}\right)_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} im \tilde{f}_n^m Y_n^m(\lambda_i, \varphi_j), \tag{2.14}$$

$$\left(\widetilde{\frac{\partial f}{\partial \lambda}}\right)_{n}^{m} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} im f_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}.$$
(2.15)

μ 微分

$$\left(\frac{\partial f}{\partial \mu}\right)_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{f}_{n}^{m} \left. \frac{dP_{n}^{m}}{d\mu} \right|_{j} \exp(im\lambda_{i}),$$
(2.16)

$$\left(\widetilde{\frac{\partial f}{\partial \mu}}\right)_{n}^{m} = -\frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} f_{ij} \left. \frac{dP_{n}^{m}}{d\mu} \right|_{j} \exp(-im\lambda_{i}) w_{j}. \tag{2.17}$$

2.6 参考文献

Arakawa, A., Suarez, M. J., 1983: Vertical differencing of the primitive equations in sigma coordinates. *Mon. Wea. Rev.*, **111**, 34–35.

気象庁予報部, 1982:スペクトル法による数値予報(その原理と実際). 気象庁, 111pp.

Haltiner, G.J., Williams, R.T., 1980: Numerical Prediction and Dynamic Meteorology (2nd ed.). John Wiley & Sons, 477pp.

森口, 宇田川, 一松編, 1956: 岩波数学公式 I. 岩波書店, 318pp.

森口, 宇田川, 一松編, 1960: 岩波数学公式 III. 岩波書店, 310pp.

一松 信, 1982: 数值解析. 朝倉書店, 163pp.

森 正武, 1984:数值解析法. 朝倉書店, 202pp.

寺沢寛一, 1983: 自然科学者のための数学概論(増訂版). 岩波書店, 711pp.

第3章 力学過程

3.1 はじめに

この章ではモデルの支配方程式の主要部分を記し、その離散化を行う.

ここで述べる主要部分とは、流体の支配方程式における外力項を除いた部分を指す. 外力項である鉛直乱流拡散などに関する過程については別紙を参照のこと.

離散化については、空間に関する離散化である鉛直離散化と、水平離散化の方法ならびに時間に関する離散化を行う.

3.2 数理表現

ここでは力学過程の支配方程式系の数理表現を示す。この方程式系の詳細に関しては、Haltiner and Williams (1980) もしくは別紙『支配方程式系の導出に関する参考資料¹』の『力学過程の支配方程式系の導出』を参照せよ。

3.2.1 連続の式

$$\frac{\partial \pi}{\partial t} + \boldsymbol{v}_H \cdot \nabla_{\sigma} \pi = -D - \frac{\partial \dot{\sigma}}{\partial \sigma}.$$
 (3.1)

 $^{^{1}} http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_current/doc/derivation/htm/derivation.htm$

3.2.2 静水圧の式

$$\frac{\partial \Phi}{\partial \sigma} = -\frac{RT_v}{\sigma}.\tag{3.2}$$

3.2.3 運動方程式

$$\frac{\partial \zeta}{\partial t} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial V_A}{\partial \lambda} - \frac{\partial U_A}{\partial \mu} \right) + \mathcal{D}(\zeta), \tag{3.3}$$

$$\frac{\partial D}{\partial t} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial U_A}{\partial \lambda} + \frac{\partial V_A}{\partial \mu} \right) - \nabla_{\sigma}^2 (\Phi + R\overline{T}\pi + KE) + \mathcal{D}(D). \tag{3.4}$$

3.2.4 熱力学の式

$$\frac{\partial T}{\partial t} = -\frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial UT'}{\partial \lambda} + \frac{\partial VT'}{\partial \mu} \right) + T'D
- \dot{\sigma} \frac{\partial T}{\partial \sigma} + \kappa T \left(\frac{\partial \pi}{\partial t} + \boldsymbol{v}_H \cdot \nabla_{\sigma} \pi + \frac{\dot{\sigma}}{\sigma} \right) + \frac{Q}{C_p} + \mathcal{D}(T) + \mathcal{D}'(\boldsymbol{v}).$$
(3.5)

ここで、独立変数は以下の通りである.

$$\varphi$$
: 緯度 [deg.], (3.6)

$$\lambda$$
: **Æ** \mathbf{E} [deg.], (3.7)

$$\sigma \equiv p/p_s,\tag{3.8}$$

$$t:$$
 時間 [s]. (3.9)

ここで, p は気圧, p_s は地表面気圧である. また $\mu \equiv \sin \varphi$ である.

モデルで時間発展を計算することとなる予報変数は以下の通りである.

$$\pi (\varphi, \lambda) \equiv \ln p_s, \tag{3.10}$$

$$T(\varphi, \lambda, \sigma)$$
: 気温[K], (3.11)

$$\zeta(\varphi,\lambda,\sigma) \equiv \frac{1}{a} \left(\frac{1}{1-\mu^2} \frac{\partial V}{\partial \lambda} - \frac{\partial U}{\partial \mu} \right) : \quad \mathbf{AE}[\mathbf{s}^{-1}], \tag{3.12}$$

$$D(\varphi, \lambda, \sigma) \equiv \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial U}{\partial \lambda} + \frac{\partial V}{\partial \mu} \right) : \quad \Re \mathbf{b} [s^{-1}]. \tag{3.13}$$

ここで,

$$U(\varphi, \lambda, \sigma) \equiv u(\varphi, \lambda, \sigma) \cos \varphi, \tag{3.14}$$

$$V(\varphi, \lambda, \sigma) \equiv v(\varphi, \lambda, \sigma) \cos \varphi, \tag{3.15}$$

$$u:$$
 東西風速, (3.16)

$$v$$
: 南北風速 (3.17)

である. 流線関数 ψ と速度ポテンシャル χ を導入すると, U,V,ζ,D はそれぞれ以下のように表わされる.

$$U = \frac{1}{a} \left(\frac{\partial \chi}{\partial \lambda} - (1 - \mu^2) \frac{\partial \psi}{\partial \mu} \right), \tag{3.18}$$

$$V = \frac{1}{a} \left(\frac{\partial \psi}{\partial \lambda} + (1 - \mu^2) \frac{\partial \chi}{\partial \mu} \right), \tag{3.19}$$

$$\zeta = \nabla^2 \psi, \tag{3.20}$$

$$D = \nabla^2 \chi. \tag{3.21}$$

各時間ステップで診断的に求められる変数は以下の通りである.

$$\dot{\sigma} \equiv \frac{d\sigma}{dt} \equiv \frac{\partial\sigma}{\partial t} + \frac{u}{a\cos\varphi} \frac{\partial\sigma}{\partial\lambda} + \frac{v}{a} \frac{\partial\sigma}{\partial\varphi} + \frac{\partial\sigma}{\partial\sigma}, \tag{3.23}$$

$$\overline{T}(\sigma)$$
: 基準温度 [K], (3.24)

$$T'(\varphi, \lambda, \sigma) \equiv T - \overline{T},\tag{3.25}$$

$$U_A(\varphi, \lambda, \sigma) \equiv (\zeta + f)V - \dot{\sigma} \frac{\partial U}{\partial \sigma} - \frac{RT'}{a} \frac{\partial \pi}{\partial \lambda} + \mathcal{F}_{\lambda} \cos \varphi, \tag{3.26}$$

$$V_A(\varphi, \lambda, \sigma) \equiv -(\zeta + f)U - \dot{\sigma}\frac{\partial V}{\partial \sigma} - \frac{RT'}{a}(1 - \mu^2)\frac{\partial \pi}{\partial \mu} + \mathcal{F}_{\varphi}\cos\varphi, \tag{3.27}$$

$$\mathbf{v}_H \cdot \nabla_{\sigma} \pi \equiv \frac{U}{a(1-\mu^2)} \frac{\partial \pi}{\partial \lambda} + \frac{V}{a} \frac{\partial \pi}{\partial \mu}$$
(3.28)

$$\nabla_{\sigma}^{2} \equiv \frac{1}{a^{2}(1-\mu^{2})} \frac{\partial^{2}}{\partial \lambda^{2}} + \frac{1}{a^{2}} \frac{\partial}{\partial \mu} \left[(1-\mu^{2}) \frac{\partial}{\partial \mu} \right], \tag{3.29}$$

$$KE\left(\varphi,\lambda,\sigma\right) \equiv \frac{U^2 + V^2}{2(1-\mu^2)} \tag{3.30}$$

$$\mathcal{D}(\zeta)$$
: 渦度の水平拡散とスポンジ層における散逸, (3.31)

$$\mathcal{D}(D)$$
: 発散の水平拡散とスポンジ層における散逸, (3.32)

$$\mathcal{D}(T)$$
: 熱の水平拡散, (3.33)

$$\mathcal{F}_{\lambda}\left(\varphi,\lambda,\sigma\right)$$
: 小規模運動過程 (経度方向), (3.34)

$$\mathcal{F}_{\omega}(\varphi,\lambda,\sigma)$$
: 小規模運動過程 (緯度方向), (3.35)

$$Q(\varphi,\lambda,\sigma)$$
: 放射,凝結,小規模運動過程等による加熱・温度変化, (3.36)

$$\mathcal{D}'(v)$$
: 摩擦熱. (3.37)

各水平拡散 $(3.31)\sim(\ref{eq:3.2.6})$ に関しては 3.2.6 節で説明される. 定数は以下の通りである.

$$a: \quad \mathbb{S}\mathbb{Z} + \mathbb{C}[m], \tag{3.38}$$

$$R:$$
 大気の気体定数 $[J kg^{-1} K^{-1}],$ (3.39)

$$C_n$$
: 大気の大気定圧比熱 [J kg⁻¹ K⁻¹], (3.40)

$$f:$$
 コリオリパラメータ [s⁻¹], (3.41)

$$\kappa \equiv R/C_p,\tag{3.42}$$

(3.43)

3.2.5 境界条件

鉛直流に関する境界条件は

$$\dot{\sigma} = 0 \quad at \quad \sigma = 0, \ 1. \tag{3.44}$$

である. よって (3.1) から, 地表気圧の時間変化式と σ 系での鉛直速度 $\dot{\sigma}$ を求める診断式

$$\frac{\partial \pi}{\partial t} = -\int_0^1 \boldsymbol{v}_H \cdot \nabla_\sigma \pi d\sigma - \int_0^1 Dd\sigma, \tag{3.45}$$

$$\dot{\sigma} = -\sigma \frac{\partial \pi}{\partial t} - \int_0^{\sigma} Dd\sigma - \int_0^{\sigma} \mathbf{v}_H \cdot \nabla_{\sigma} \pi d\sigma, \tag{3.46}$$

が導かれる.

3.2.6 水平拡散層

水平拡散における渦度と発散の散逸は次のように表現する.

$$\mathcal{D}(\zeta) = \mathcal{D}_{\mathcal{H}\mathcal{D}}(\zeta) \tag{3.47}$$

$$\mathcal{D}(D) = \mathcal{D}_{\mathcal{H}\mathcal{D}}(D) \tag{3.48}$$

$$\mathcal{D}(T) = \mathcal{D}_{\mathcal{H}\mathcal{D}}(T) \tag{3.49}$$

ここで、 \mathcal{D}_{HD} は水平拡散による散逸を表す.

水平拡散項は、次のように ∇^{N_D} の形で計算する.

$$\mathcal{D}_{\mathcal{H}\mathcal{D}}(\zeta) = -K_{HD} \left[(-1)^{N_D/2} \nabla^{N_D} - \left(\frac{2}{a^2}\right)^{N_D/2} \right] \zeta, \tag{3.50}$$

$$\mathcal{D}_{\mathcal{H}\mathcal{D}}(D) = -K_{HD} \left[(-1)^{N_D/2} \nabla^{N_D} - \left(\frac{2}{a^2} \right)^{N_D/2} \right] D, \tag{3.51}$$

$$\mathcal{D}_{\mathcal{H}\mathcal{D}}(T) = -(-1)^{N_D/2} K_{HD} \nabla^{N_D} T, \qquad (3.52)$$

小さなスケールに選択的な水平拡散を表すため、慣例として N_D には $4{\sim}16$ を用いることが多い.

3.3 離散表現:鉛直離散化

ここでは支配方程式を鉛直方向に離散化する. Arakawa and Suarez(1983) に従って, $(3.1) \sim (3.5)$ を鉛直方向に差分によって離散化する. 各方程式の離散化表現は次のようになる.

3.3.1 連続の式,鉛直速度

$$\frac{\partial \pi}{\partial t} = -\sum_{k=1}^{K} (D_k + \boldsymbol{v}_k \cdot \nabla \pi) \Delta \sigma_k, \tag{3.53}$$

$$\dot{\sigma}_{k-1/2} = -\sigma_{k-1/2} \frac{\partial \pi}{\partial t} - \sum_{l=k}^{K} (D_l + \boldsymbol{v}_l \cdot \nabla \pi) \Delta \sigma_l \qquad (k = 2, \dots, K), \qquad (3.54)$$

$$\dot{\sigma}_{1/2} = \dot{\sigma}_{K+1/2} = 0. \tag{3.55}$$

ここで,

$$\boldsymbol{v}_k \cdot \nabla \pi = \frac{U_k}{a(1-\mu^2)} \frac{\partial \pi}{\partial \lambda} + \frac{V_k}{a(1-\mu^2)} (1-\mu^2) \frac{\partial \pi}{\partial \mu}.$$
 (3.56)

3.3.2 静水圧の式

$$\Phi_1 = \Phi_s + C_p(\sigma_1^{-\kappa} - 1)T_1
= \Phi_s + C_p\alpha_1 T_1.$$
(3.57)

$$\Phi_{k} - \Phi_{k-1} = C_{p} \left[\left(\frac{\sigma_{k-1/2}}{\sigma_{k}} \right)^{\kappa} - 1 \right] T_{k} + C_{p} \left[1 - \left(\frac{\sigma_{k-1/2}}{\sigma_{k-1}} \right)^{\kappa} \right] T_{v,k-1}
= C_{p} \alpha_{k} T_{k} + C_{p} \beta_{k-1} T_{k-1}.$$
(3.58)

ここで,

$$\alpha_k = \left(\frac{\sigma_{k-1/2}}{\sigma_k}\right)^{\kappa} - 1,\tag{3.59}$$

$$\beta_k = 1 - \left(\frac{\sigma_{k+1/2}}{\sigma_k}\right)^{\kappa},\tag{3.60}$$

$$\Phi_s = gz_s \tag{3.61}$$

であり、 z_s は地表面高度である.

3.3.3 運動方程式

$$\frac{\partial \zeta_k}{\partial t} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial V_{A,k}}{\partial \lambda} - \frac{\partial U_{A,k}}{\partial \mu} \right) + \mathcal{D}(\zeta_k), \tag{3.62}$$

$$\frac{\partial D_k}{\partial t} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial U_{A,k}}{\partial \lambda} + \frac{\partial V_{A,k}}{\partial \mu} \right) - \nabla_{\sigma}^2 (\Phi_k + C_p \hat{\kappa}_k \overline{T}_k \pi + (KE)_k) + \mathcal{D}(D_k).$$
(3.63)

ここで,

$$U_{A,1} = (\zeta_1 + f)V_1 - \frac{1}{2\Delta\sigma_1}\dot{\sigma}_{3/2}(U_1 - U_2) - \frac{C_p\hat{\kappa}_1 T_1'}{a}\frac{\partial\pi}{\partial\lambda} + \mathcal{F}_{\lambda,1}\cos\varphi,$$

$$U_{A,k} = (\zeta_k + f)V_k - \frac{1}{2\Delta\sigma_k}[\dot{\sigma}_{k-1/2}(U_{k-1} - U_k) + \dot{\sigma}_{k+1/2}(U_k - U_{k+1})]$$

$$- \frac{C_p\hat{\kappa}_k T_k'}{a}\frac{\partial\pi}{\partial\lambda} + \mathcal{F}_{\lambda,k}\cos\varphi, \qquad (k = 2, \dots, K - 1)$$

$$U_{A,K} = (\zeta_K + f)V_K - \frac{1}{2\Delta\sigma_K}\dot{\sigma}_{K-1/2}(U_{K-1} - U_K) - \frac{C_p\hat{\kappa}_K T_K'}{a}\frac{\partial\pi}{\partial\lambda} + \mathcal{F}_{\lambda,K}\cos\varphi,$$

$$(3.64)$$

$$V_{A,1} = -(\zeta_{1} + f)U_{1} - \frac{1}{2\Delta\sigma_{1}}\dot{\sigma}_{3/2}(V_{1} - V_{2}) - \frac{C_{p}\hat{\kappa}_{1}T_{1}'}{a}(1 - \mu^{2})\frac{\partial\pi}{\partial\mu} + \mathcal{F}_{\varphi,1}\cos\varphi,$$

$$V_{A,k} = -(\zeta_{k} + f)U_{k} - \frac{1}{2\Delta\sigma_{k}}[\dot{\sigma}_{k-1/2}(V_{k-1} - V_{k}) + \dot{\sigma}_{k+1/2}(V_{k} - V_{k+1})]$$

$$- \frac{C_{p}\hat{\kappa}_{k}T_{k}'}{a}(1 - \mu^{2})\frac{\partial\pi}{\partial\mu} + \mathcal{F}_{\varphi,k}\cos\varphi, \qquad (k = 2, \cdots, K - 1)$$

$$V_{A,K} = -(\zeta_{K} + f)U_{K} - \frac{1}{2\Delta\sigma_{K}}\dot{\sigma}_{K-1/2}(V_{K-1} - V_{K})$$

$$- \frac{C_{p}\hat{\kappa}_{k}T_{K}'}{a}(1 - \mu^{2})\frac{\partial\pi}{\partial\mu} + \mathcal{F}_{\varphi,K}\cos\varphi,$$
(3.65)

$$\hat{\kappa}_{k} = \frac{\sigma_{k-1/2}(\sigma_{k-1/2}^{\kappa} - \sigma_{k}^{\kappa}) + \sigma_{k+1/2}(\sigma_{k}^{\kappa} - \sigma_{k+1/2}^{\kappa})}{\sigma_{k}^{\kappa}(\sigma_{k-1/2} - \sigma_{k+1/2})}$$

$$= \frac{\sigma_{k-1/2}\alpha_{k} + \sigma_{k+1/2}\beta_{k}}{\Delta\sigma_{k}},$$
(3.66)

$$T_k' = T_k - \overline{T}_k, \tag{3.67}$$

$$(KE)_k = \frac{U_k^2 + V_k^2}{2(1 - \mu^2)}. (3.68)$$

3.3.4 熱力学の式

$$\frac{\partial T_k}{\partial t} = -\frac{1}{a\cos\varphi} \left(\frac{1}{1-\mu^2} \frac{\partial U_k T_k'}{\partial \lambda} + \frac{\partial V_k T_k'}{\partial \mu} \right) + H_k
+ \frac{Q_k}{C_p} + \mathcal{D}(T_k) + \mathcal{D}'(\boldsymbol{v}).$$
(3.69)

ここで,

$$H_{k} \equiv T_{k}' D_{k} - \frac{1}{\Delta \sigma_{k}} \left[\dot{\sigma}_{k-1/2} (\hat{T}_{k-1/2} - T_{k}) + \dot{\sigma}_{k+1/2} (T_{k} - \hat{T}_{k+1/2}) \right]$$

$$+ \left\{ \alpha_{k} \left[\sigma_{k-1/2} \boldsymbol{v}_{k} \cdot \nabla \boldsymbol{\pi} - \sum_{l=k}^{K} (D_{l} + \boldsymbol{v}_{l} \cdot \nabla \boldsymbol{\pi}) \Delta \sigma_{l} \right] \right\}$$

$$+ \beta_{k} \left[\sigma_{k+1/2} \boldsymbol{v}_{k} \cdot \nabla \boldsymbol{\pi} - \sum_{l=k+1}^{K} (D_{l} + \boldsymbol{v}_{l} \cdot \nabla \boldsymbol{\pi}) \Delta \sigma_{l} \right] \right\} \frac{1}{\Delta \sigma_{k}} T_{k}$$

$$= T_{k}' D_{k} - \frac{1}{\Delta \sigma_{k}} \left[\dot{\sigma}_{k-1/2} (\hat{T}_{k-1/2} - T_{k}) + \dot{\sigma}_{k+1/2} (T_{k} - \hat{T}_{k+1/2}) \right]$$

$$+ \hat{\kappa}_{k} \boldsymbol{v}_{k} \cdot \nabla \boldsymbol{\pi} T_{v,k}$$

$$- \alpha_{k} \sum_{l=k}^{K} (D_{l} + \boldsymbol{v}_{l} \cdot \nabla \boldsymbol{\pi}) \Delta \sigma_{l} \frac{T_{k}}{\Delta \sigma_{k}}$$

$$- \beta_{k} \sum_{l=k+1}^{K} (D_{l} + \boldsymbol{v}_{l} \cdot \nabla \boldsymbol{\pi}) \Delta \sigma_{l} \frac{T_{k}}{\Delta \sigma_{k}}$$

$$- \beta_{k} \sum_{l=k+1}^{K} (D_{l} + \boldsymbol{v}_{l} \cdot \nabla \boldsymbol{\pi}) \Delta \sigma_{l} \frac{T_{k}}{\Delta \sigma_{k}}$$

$$(3.70)$$

$$H_{K} \equiv T_{K}' D_{K} - \frac{1}{\Delta \sigma_{K}} \left[\dot{\sigma}_{K-1/2} (\hat{T}_{K-1/2} - T_{K}) + \dot{\sigma}_{K+1/2} (T_{K} - \hat{T}_{K+1/2}) \right]$$

$$+ \hat{\kappa}_{K} \boldsymbol{v}_{K} \cdot \nabla \boldsymbol{\pi} T_{v,K}$$

$$- \alpha_{K} (D_{K} + \boldsymbol{v}_{K} \cdot \nabla \boldsymbol{\pi}) \Delta \sigma_{K} \frac{T_{K}}{\Delta \sigma_{K}}$$

であり,

$$\hat{T}_{k-1/2} = \frac{\left[\left(\frac{\sigma_{k-1/2}}{\sigma_k} \right)^{\kappa} - 1 \right] \sigma_{k-1}^{\kappa} T_k + \left[1 - \left(\frac{\sigma_{k-1/2}}{\sigma_{k-1}} \right)^{\kappa} \right] \sigma_k^{\kappa} T_{k-1}}{\sigma_{k-1}^{\kappa} - \sigma_k^{\kappa}}$$

$$= a_k T_k + b_{k-1} T_{k-1} \qquad (k = 2, \dots, K),$$

$$\hat{T}_{1/2} = 0,$$

$$\hat{T}_{K+1/2} = 0,$$
(3.71)

$$a_k = \alpha_k \left[1 - \left(\frac{\sigma_k}{\sigma_{k-1}} \right)^{\kappa} \right]^{-1}, \tag{3.72}$$

$$b_k = \beta_k \left[\left(\frac{\sigma_k}{\sigma_{k+1}} \right)^{\kappa} - 1 \right]^{-1}. \tag{3.73}$$

3.4 離散表現: 水平離散化

ここでは支配方程式を水平離散化する. 水平方向の離散化はスペクトル変換法を用いる (Bourke, 1988). 非線形項は格子点上で計算する. 各方程式のスペクトル表現は以下のようになる. スペクトル表現に関する記号の意味については 2.5 節を参照されたい. その詳細については第 B 章を参照せよ. なお, 簡単化のため, 部分的に鉛直方向添字 k を省略する.

3.4.1 連続の式

$$\frac{\partial \tilde{\pi}_n^m}{\partial t} = -\sum_{k=1}^K (\tilde{D}_n^m)_k \Delta \sigma_k + \frac{1}{I} \sum_{i=1}^I \sum_{j=1}^J Z_{ij} Y_n^{m*}(\lambda_i, \mu_j) w_j.$$
 (3.74)

ここで,

$$Z \equiv -\sum_{k=1}^{K} \boldsymbol{v}_k \cdot \nabla \pi \Delta \sigma_k. \tag{3.75}$$

3.4.2 運動方程式

$$\frac{\partial \tilde{\zeta}_{n}^{m}}{\partial t} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} im V_{A,ij} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1 - \mu_{j}^{2})}
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} U_{A,ij} (1 - \mu_{j}^{2}) \frac{\partial}{\partial \mu} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1 - \mu_{j}^{2})}
+ \tilde{\mathcal{D}}_{M,n}^{m} \tilde{\zeta}_{n}^{m},
\frac{\partial \tilde{D}_{n}^{m}}{\partial t} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} im U_{A,ij} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1 - \mu_{j}^{2})}
- \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} V_{A,ij} (1 - \mu_{j}^{2}) \frac{\partial}{\partial \mu} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1 - \mu_{j}^{2})}
- \frac{n(n+1)}{a^{2}} \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} (KE)_{ij} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) w_{j}
+ \frac{n(n+1)}{a^{2}} (\Phi_{n}^{m} + C_{p} \hat{\kappa}_{k} \bar{T}_{k} \pi_{n}^{m}) + \tilde{\mathcal{D}}_{M,n}^{m} \tilde{\mathcal{D}}_{n}^{m}.$$
(3.76)

ここで.

$$\tilde{\mathcal{D}}_{M,n}^{m} = -K_{HD} \left[\left\{ -\frac{n(n+1)}{a^2} \right\}^{N_D/2} - \left(\frac{2}{a^2} \right)^{N_D/2} \right] - \tilde{\gamma}_{M,k,n}^{m}, \tag{3.78}$$

$$\tilde{\gamma}_{M,k,n}^{m} = \begin{cases} \tilde{\gamma}_{M,0,n}^{m} \left(\frac{\sigma_{K}}{\sigma_{k}}\right)^{N_{SL}}, & (k \ge k_{SLlim}) \\ 0. & (k < k_{SLlim}) \end{cases}$$
(3.79)

なお、depam では、 K_{HD} は、打ち切り波数成分の減衰時定数 (1/e になる時間)、 τ_{HD} 、を用いて与える 2 . つまり、

$$K_{HD} = \frac{1}{\tau_{HD}} \left\{ \frac{N(N+1)}{a^2} \right\}^{-N_D/2}$$
 (3.80)

である.

 $^{^2}$ 正確には、温度擾乱の減衰時定数である. ... からも明らかのように、運動方程式の水平拡散項には、全角運動量を保存するための項が加わるため、 au_{HD} は 1/e になる時間にはならない.

3.4.3 熱力学の式

$$\frac{\partial \tilde{T}_{n}^{m}}{\partial t} = -\frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} im U_{ij} T'_{ij} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1 - \mu_{j}^{2})}
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} V_{ij} T'_{ij} (1 - \mu_{j}^{2}) \frac{\partial}{\partial \mu} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1 - \mu_{j}^{2})}
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} \left(H_{ij} + \frac{Q_{ij}}{C_{p}} \right) Y_{n}^{m*}(\lambda_{i}, \mu_{j}) w_{j}
+ \tilde{\mathcal{D}}_{H,n}^{m} \tilde{T}_{n}^{m}
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} \mathcal{D}'_{ij}(\mathbf{v}) Y_{n}^{m*}(\lambda_{i}, \mu_{j}) w_{j}.$$
(3.81)

ここで,

$$\tilde{\mathcal{D}}_{H,n}^{m} = -K_{HD} \left\{ -\frac{n(n+1)}{a^2} \right\}^{N_D/2} - \tilde{\gamma}_{H,k,n}^{m}. \tag{3.82}$$

$$\tilde{\gamma}_{H,k,n}^{m} = \begin{cases} \tilde{\gamma}_{H,0,n}^{m} \left(\frac{\sigma_{K}}{\sigma_{k}}\right)^{N_{SL}}, & (k \ge k_{SLlim}) \\ 0, & (k < k_{SLlim}) \end{cases}$$
(3.83)

$$\tilde{\gamma}_{H,0,n}^{m} = \begin{cases} \gamma_{H,0}, & (m \neq 0) \\ 0, & (m = 0) \end{cases}$$
(3.84)

である.

3.5 離散表現:時間離散化

ここでは時間積分スキームについて記す.

時間差分には、複数の方法を組み合わせて用いる、用いる方法の概要を以下に示す。

• 力学過程

- 水平拡散およびスポンジ層における減衰項には、後方差分を用いる。
- その他の項には, leap frog 法と Crank-Nicolson 法を組み合わせた semi-implicit 法 (Bourke, 1988) を用いる.

● 時間フィルタ

- 力学過程, 物理過程のすべての計算後に, 力学過程で用いている leap frog 法を起源とする計算モード抑制のための時間フィルター (Asselin, 1972) を適応する.

この方法は、予報変数を A と表すと、以下の 3 式で表現される.

$$\frac{\hat{\mathcal{A}}^{t+\Delta t} - \bar{\mathcal{A}}^{t-\Delta t}}{2\Delta t} = \frac{1}{2} \left\{ \dot{\mathcal{A}}_{dyn,G} \left(\bar{\mathcal{A}}^{t-\Delta t} \right) + \dot{\mathcal{A}}_{dyn,G} \left(\hat{\mathcal{A}}^{t+\Delta t} \right) \right\} + \dot{\mathcal{A}}_{dyn,NG} \left(\mathcal{A}^{t} \right) + \dot{\mathcal{A}}_{dyn,dis} \left(\hat{\mathcal{A}}^{t+\Delta t} \right) \quad (3.85)$$

$$\mathcal{A}^{t+\Delta t} = \hat{\mathcal{A}}^{t+\Delta t} + 2\Delta t \dot{\mathcal{A}}_{fric} \left(\hat{\mathcal{A}}^{t+\Delta t} \right)$$
 (3.86)

$$\bar{\mathcal{A}}^t = \mathcal{A}^t + \epsilon_f \left(\bar{\mathcal{A}}^{t-\Delta t} - 2\mathcal{A}^t + \mathcal{A}^{t+\Delta t} \right). \tag{3.87}$$

ここで、 $\dot{A}_{dyn,G}$ 、 $\dot{A}_{dyn,NG}$ はそれぞれ、力学過程において semi-implicit 法で分離された重力波項(線型項)と非重力波項(非線型項), $\dot{A}_{dyn,dis}$ は水平拡散とスポンジ層における減衰項である。 ϵ_f は時間フィルタの係数であり,dcpam での標準値は0.05 としている.

3.5.1 力学過程の方程式系の時間差分式

まず、semi-implicit 法を用いるために、方程式系を $T=\overline{T}_k$ である静止場に基づいて線形重力波項とそれ以外の項に分離する. 鉛直方向のベクトル表現 $\mathbf{A}=\{A_k\}$ 、および行列表現 $\underline{A}=\{A_{kl}\}$ を用いると、連続の式、発散方程式、熱力学の式は、

$$\frac{\partial \tilde{\pi}_n^m}{\partial t} = \left(\frac{\partial \tilde{\pi}_n^m}{\partial t}\right)^{\text{NG}} - \boldsymbol{C} \cdot \tilde{\boldsymbol{D}}_n^m, \tag{3.88}$$

$$\frac{\partial \tilde{\boldsymbol{D}}_{n}^{m}}{\partial t} = \left(\frac{\partial \tilde{\boldsymbol{D}}_{n}^{m}}{\partial t}\right)^{\text{NG}} - \left(-\frac{n(n+1)}{a^{2}}\right) (\tilde{\boldsymbol{\Phi}}_{s,n}^{m} + \underline{W}\tilde{\boldsymbol{T}}_{n}^{m} + \boldsymbol{G}\tilde{\boldsymbol{\pi}}_{n}^{m}) + \underline{\tilde{\mathcal{D}}}_{m}^{m}\tilde{\boldsymbol{D}}_{n}^{m},$$
(3.89)

$$\frac{\partial \tilde{\boldsymbol{T}}_{n}^{m}}{\partial t} = \left(\frac{\partial \tilde{\boldsymbol{T}}_{n}^{m}}{\partial t}\right)^{\text{NG}} - \underline{h}\tilde{\boldsymbol{D}}_{n}^{m} + \underline{\tilde{\mathcal{D}}_{H_{n}}}^{m}\tilde{\boldsymbol{T}}_{n}^{m}$$
(3.90)

となる 3 . \bigcap_n^m や \bigcap_n^m といった表記については 2.5 節の (2.10), (2.15), (2.17) を 参照のこと。ここで,添字 NG の付いた項は,非重力波項であり,以下のように表される.

$$\left(\frac{\partial \tilde{\pi}_n^m}{\partial t}\right)^{\text{NG}} = \tilde{Z}_n^m,$$
(3.91)

$$\left(\frac{\partial \tilde{D}_{k,n}^{m}}{\partial t}\right)^{\text{NG}} = \frac{1}{a} \left(\left[\underbrace{\frac{1}{1-\mu^{2}} \underbrace{\partial U_{A,ijk}}}_{\partial \lambda} \right]_{n}^{m} + \left[\underbrace{\frac{\partial V_{A,ijk}}{\partial \mu}}_{n} \right]_{n}^{m} \right) - \left(-\frac{n(n+1)}{a^{2}} \right) \left[(KE)_{k} + \sum_{l=1}^{K} W_{kl} (T_{v,l} - T_{l}) \right]_{n}^{m},$$
(3.92)

$$\left(\frac{\partial \tilde{T}_{k,n}^{m}}{\partial t}\right)^{\text{NG}} = -\frac{1}{a} \left(\left[\frac{1}{1-\mu^{2}} \underbrace{\frac{\partial U_{ijk} T'_{ijk}}{\partial \lambda}}\right]_{n}^{m} + \left[\underbrace{\frac{\partial V_{ijk} T'_{ijk}}{\partial \mu}}\right]_{n}^{m} \right) + \left[\underbrace{H_{ijk}}\right]_{n}^{m}.$$
(3.93)

 $[\]overline{^3$ 念のため注記しておくと, $ilde{oldsymbol{\Phi}}_{s,n}^m = \left(ilde{\Phi}_{s,n}^m, ilde{\Phi}_{s,n}^m, \cdots, ilde{\Phi}_{s,n}^m
ight)}$ である.

各項は以下の通りである. 簡単化のため経度、緯度方向添字 i, j の表記を省略する.

$$Z = -\sum_{k=1}^{K} \boldsymbol{v}_{k} \cdot \nabla \pi \Delta \sigma_{k}, \qquad (3.94)$$

$$H_{k} = T_{k}' D_{k}$$

$$-\frac{1}{\Delta \sigma_{k}} \left[\dot{\sigma}_{k-1/2} \left(\hat{T}'_{k-1/2} - T_{k}' \right) + \dot{\sigma}_{k+1/2} \left(T_{k}' - \hat{T}'_{k+1/2} \right) \right]$$

$$-\frac{1}{\Delta \sigma_{k}} \left[\dot{\sigma}_{k-1/2}^{NG} \left(\hat{\overline{T}}_{k-1/2} - \overline{T}_{k} \right) + \dot{\sigma}_{k+1/2}^{NG} \left(\overline{T}_{k} - \hat{\overline{T}}_{k+1/2} \right) \right]$$

$$+ \hat{\kappa}_{k} T_{v,k} \boldsymbol{v}_{k} \cdot \nabla \pi$$

$$-\frac{\alpha_{k}}{\Delta \sigma_{k}} \left[T_{v,k} \sum_{l=k}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l} + T_{v,k}' \sum_{l=k}^{K} D_{l} \Delta \sigma_{l} \right]$$

$$-\frac{\beta_{k}}{\Delta \sigma_{k}} \left[T_{v,k} \sum_{l=k+1}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l} + T_{v,k}' \sum_{l=k+1}^{K} D_{l} \Delta \sigma_{l} \right] \qquad (k = 1, \dots, K-1),$$

$$H_{K} = T_{K}' D_{K}$$

$$-\frac{1}{\Delta \sigma_{K}} \left[\dot{\sigma}_{K-1/2} \left(\hat{T}'_{K-1/2} - T_{K}' \right) + \dot{\sigma}_{K+1/2} \left(T_{K}' - \hat{T}'_{K+1/2} \right) \right]$$

$$-\frac{1}{\Delta \sigma_{K}} \left[\dot{\sigma}_{K-1/2}^{NG} \left(\hat{T}_{K-1/2} - \overline{T}_{K} \right) + \dot{\sigma}_{K+1/2}^{NG} \left(\overline{T}_{K} - \hat{T}_{K+1/2} \right) \right]$$

$$+ \hat{\kappa}_{K} T_{v,K} \boldsymbol{v}_{K} \cdot \nabla \pi$$

$$-\frac{\alpha_{K}}{\Delta \sigma_{K}} \left[T_{v,K} \boldsymbol{v}_{K} \cdot \nabla \pi \Delta \sigma_{K} + T_{v,K}' D_{K} \Delta \sigma_{K} \right], \qquad (3.95)$$

$$\dot{\sigma}_{k-1/2}^{\text{NG}} = -\sigma_{k-1/2} \left(\frac{\partial \pi}{\partial t} \right)^{\text{NG}} - \sum_{l=k}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l}
= \sigma_{k-1/2} \sum_{k=1}^{K} \boldsymbol{v}_{k} \cdot \nabla \pi \Delta \sigma_{k} - \sum_{l=k}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l},$$
(3.96)

$$\hat{T}'_{k-1/2} = \begin{cases}
0, & (k=1) \\
\hat{T}_{k-1/2} - \hat{\overline{T}}_{k-1/2}, & (k=2,\cdots,K) \\
0, & (k=K+1)
\end{cases}$$
(3.97)

$$\hat{\overline{T}}_{k-1/2} = \begin{cases}
0, & (k=1) \\
a_k \overline{T}_k + b_{k-1} \overline{T}_{k-1}, & (k=2, \dots, K) \\
0. & (k=K+1)
\end{cases}$$
(3.98)

また、重力波項のベクトルおよび行列は以下のとおりである.

$$C_k = \Delta \sigma_k, \tag{3.99}$$

$$W_{kl} = C_p \alpha_l \delta_{k \ge l} + C_p \beta_l \delta_{k-1 \ge l}, \tag{3.100}$$

$$G_k = \hat{\kappa}_k C_p \overline{T}_k, \tag{3.101}$$

$$\underline{h} = Q\underline{S} - \underline{R},\tag{3.102}$$

$$Q_{kl} = \frac{1}{\Delta \sigma_k} (\hat{\overline{T}}_{k-1/2} - \overline{T}_k) \delta_{k=l} + \frac{1}{\Delta \sigma_k} (\overline{T}_k - \hat{\overline{T}}_{k+1/2}) \delta_{k+1=l}, \tag{3.103}$$

$$S_{kl} = \sigma_{k-1/2} \Delta \sigma_l - \Delta \sigma_l \delta_{k \le l}, \tag{3.104}$$

$$R_{kl} = -\left(\frac{\alpha_k}{\Delta \sigma_k} \Delta \sigma_l \delta_{k \le l} + \frac{\beta_k}{\Delta \sigma_k} \Delta \sigma_l \delta_{k+1 \le l}\right) \overline{T}_k, \tag{3.105}$$

$$(\tilde{\mathcal{D}}_{M,kl})_n^m = -K_{HD} \left[\left(\frac{-n(n+1)}{a^2} \right)^{N_D/2} - \left(\frac{2}{a^2} \right)^{N_D/2} \right] \delta_{k=l}$$

$$-\gamma_{M,0,n}^m \left(\frac{\sigma_k}{\sigma_K}\right)^{N_{SL}} \delta_{k=l} \delta_{k \ge k_{SLlim}}.$$
 (3.106)

$$(\tilde{\mathcal{D}}_{H,kl})_{n}^{m} = -K_{HD} \left(\frac{-n(n+1)}{a^{2}}\right)^{N_{D}/2} \delta_{k=l}$$
$$-\gamma_{H,0,n}^{m} \left(\frac{\sigma_{k}}{\sigma_{K}}\right)^{N_{SL}} \delta_{k=l} \delta_{k \geq k_{SLlim}}. \tag{3.107}$$

 $\delta_{k < l}$ は, $k \le l$ が成り立つとき 1, そうでないとき 0 となる関数である.

なお, 渦度方程式には線型重力波項がないため, ここでは示さない. ⁴ これらの方程式に,

- 水平拡散による減衰項には後退差分
- その他の項には、leap frog 法と中心差分を組み合わせた semi-implicit 法

を適応すると、

$$\delta_t \tilde{\pi}_n^m = \left(\frac{\partial \tilde{\pi}_n^m}{\partial t}\right)^{\text{NG}} - \boldsymbol{C} \cdot \overline{\boldsymbol{\tilde{D}}_n^{mt}}, \tag{3.108}$$

$$\delta_{t}\tilde{\boldsymbol{D}}_{n}^{m} = \left(\frac{\partial\tilde{\boldsymbol{D}}_{n}^{m}}{\partial t}\right)^{\text{NG}} - \left(-\frac{n(n+1)}{a^{2}}\right)\left(\tilde{\boldsymbol{\Phi}}_{s,n}^{m} + \underline{W}\overline{\tilde{\boldsymbol{T}}_{n}^{m}}^{t} + \boldsymbol{G}\overline{\tilde{\boldsymbol{\pi}}_{n}^{m}}^{t}\right) + \underline{\tilde{\mathcal{D}}_{M}}_{n}^{m}\tilde{\boldsymbol{D}}_{n}^{m,t+\Delta t},$$
(3.109)

⁴ここは本当は方程式を書くべきだろう. 後で書く. (YOT, 2009/10/11)

$$\delta_t \tilde{\boldsymbol{T}}_n^m = \left(\frac{\partial \tilde{\boldsymbol{T}}_n^m}{\partial t}\right)^{\text{NG}} - \underline{h} \overline{\tilde{\boldsymbol{D}}_n^m}^t + \underline{\tilde{\mathcal{D}}_H}_n^m \tilde{\boldsymbol{T}}_n^{m,t+\Delta t}.$$
(3.110)

となる. ただし.

$$\delta_t \mathcal{A} \equiv \frac{1}{2\Delta t} \left(\mathcal{A}^{t+\Delta t} - \mathcal{A}^{t-\Delta t} \right), \tag{3.111}$$

$$\overline{\mathcal{A}}^{t} \equiv \frac{1}{2} \left(\mathcal{A}^{t+\Delta t} + \mathcal{A}^{t-\Delta t} \right) = \mathcal{A}^{t-\Delta t} + \delta_{t} \mathcal{A} \Delta t. \tag{3.112}$$

である.

 $(3.108),\,(3.109),\,(3.110)$ より $,\,\overline{ ilde{m{D}}_n^m}^t$ について整理すると $,\,$

$$\left[(\underline{I} - 2\Delta t \underline{\tilde{\mathcal{D}}_{M_{n}}}^{m}) - (\Delta t)^{2} \left(-\frac{n(n+1)}{a^{2}} \right) \left\{ \underline{W} (\underline{I} - 2\Delta t \underline{\tilde{\mathcal{D}}_{H_{n}}}^{m})^{-1} \underline{h} + \boldsymbol{G} \boldsymbol{C}^{T} \right\} \right] \underline{\tilde{\boldsymbol{D}}_{n}}^{mt} \\
= (\underline{I} - \Delta t \underline{\tilde{\mathcal{D}}_{M_{n}}}^{m}) \tilde{\boldsymbol{D}}_{n}^{m,t-\Delta t} + \Delta t \left(\frac{\partial \tilde{\boldsymbol{D}}_{n}}{\partial t} \right)^{NG} \\
- \Delta t \left(-\frac{n(n+1)}{a^{2}} \right) \left[\underline{\tilde{\boldsymbol{\Phi}}}_{s,n}^{m} \right. \\
+ \underline{W} (\underline{I} - 2\Delta t \underline{\tilde{\mathcal{D}}_{H_{n}}}^{m})^{-1} \left\{ (\underline{I} - \Delta t \underline{\tilde{\mathcal{D}}_{H_{n}}}^{m}) \tilde{\boldsymbol{T}}_{n}^{m,t-\Delta t} + \Delta t \left(\frac{\partial \tilde{\boldsymbol{T}}_{n}^{m}}{\partial t} \right)^{NG} \right\} \\
+ \boldsymbol{G} \left\{ \tilde{\boldsymbol{\pi}}_{n}^{m,t-\Delta t} + \Delta t \left(\frac{\partial \tilde{\boldsymbol{\pi}}_{n}^{m}}{\partial t} \right)^{NG} \right\} \right] \tag{3.113}$$

となる. ここで \underline{I} は単位行列, C^T は C の転置ベクトルである. (3.113) を $\overline{\tilde{m{D}}_n^m}^t$ について解き,

$$\tilde{\boldsymbol{D}}_{n}^{m,t+\Delta t} = 2\overline{\tilde{\boldsymbol{D}}_{n}^{mt}} - \tilde{\boldsymbol{D}}_{n}^{m,t-\Delta t}$$
(3.114)

および, (3.108), (3.110) により $\hat{\mathcal{A}}^{t+\Delta t}$ が求められる.

3.6 参考文献

Arakawa, A., Suarez, M. J., 1983: Vertical differencing of the primitive equations in sigma coordinates. *Mon. Wea. Rev.*, **111**, 34–35.

- Asselin, R. A., 1972: Frequency filter for time integrations. *Mon. Wea. Rev.*, **100**, 487–490.
- Bourke, W.P., 1988: Spectral methods in global climate and weather prediction models. *Physically-Based Modelling and Simulation of Climates and Climatic Change. Part I.*, M.E. Schlesinger (ed.), Kluwer Academic Publishers, Dordrecht, 169–220.
- Haltiner, G.J., Williams, R.T., 1980: Numerical Prediction and Dynamic Meteorology (2nd ed.). John Wiley & Sons, 477pp.
- 石岡 圭一, 2004: スペクトル法による数値計算入門. 東京大学出版会, 232pp.

第4章 乱流過程

数理表現 4.1

鉛直拡散による運動方程式、熱力学の式、成分の式における変化率は下のようにそ れぞれ下のように書くことができる.

$$\left(\frac{\partial u}{\partial t}\right)_{VD} = -\frac{1}{\rho} \frac{\partial F_{m,x}}{\partial z} \tag{4.1}$$

$$= g \frac{\partial F_{m,x}}{\partial p} \tag{4.2}$$

$$= g \frac{\partial F_{m,x}}{\partial p}$$

$$= \left(\frac{\partial v}{\partial t}\right)_{VD} = g \frac{\partial F_{m,y}}{\partial p}$$

$$(4.2)$$

$$\left(\frac{\partial T}{\partial t}\right)_{VD} = \frac{g}{C_p} \frac{\partial F_h}{\partial p} \tag{4.4}$$

ここで, $F_{m,x}$, $F_{m,y}$, F_h はそれぞれ東西方向, 南北方向の運動量フラックス, 熱フ ラックス、物質のフラックスであり、下のように表現される.

$$F_{m,x} = -\rho K_m \frac{\partial u}{\partial z} \tag{4.5}$$

$$F_{m,y} = -\rho K_m \frac{\partial v}{\partial z} \tag{4.6}$$

$$F_h = -C_p P \rho K_h \frac{\partial \theta}{\partial z} \tag{4.7}$$

$$\theta = \frac{T}{P} \tag{4.8}$$

$$P = \left(\frac{p_{00}}{p}\right)^{\kappa} \tag{4.9}$$

$$\kappa = \frac{R}{C_p} \tag{4.10}$$

ただし、下部境界ではバルク法を用いて

$$F_{m,x} = -\rho C_d |\boldsymbol{v}| u \tag{4.11}$$

$$F_{m,y} = -\rho C_d |\mathbf{v}| v \tag{4.12}$$

$$F_h = -C_p P \rho C_h |\mathbf{v}| (\theta - \theta_s) \tag{4.13}$$

のように評価し、上部境界では

$$F_{m,x} = 0 (4.14)$$

$$F_{m,y} = 0 (4.15)$$

$$F_h = 0 (4.16)$$

とする. ここで, p_{00} は基準圧力である. K_m , K_h はそれぞれ運動量, 熱の拡散係数である. C_d , C_h はそれぞれ運動量, 熱のバルク係数である.

 K_m , K_h はそれぞれ Mellor and Yamada (1982) レベル 2 の方法に従って評価する. これら拡散係数の具体的な評価方法については … 節で述べる. C_d , C_h はそれぞれ Louis et al. (1982) の方法に従って評価する. これらバルク係数の具体的な評価方法については … 節で述べる.

4.1.1 鉛直拡散係数

鉛直拡散係数, K_m , K_h , K_q , は Mellor and Yamada (1974, 1982) レベル 2 の方法 に従って評価する.

Mellor and Yamada (1974, 1982) の方法に従うと、拡散係数は下のように表現される.

$$K_m = l^2 \left| \frac{\partial \mathbf{v}}{\partial z} \right| S_M \tag{4.17}$$

$$K_h = l^2 \left| \frac{\partial \mathbf{v}}{\partial z} \right| S_H \tag{4.18}$$

ここで, l は混合距離であり,

$$l = \frac{k(z - z_s)}{1 + k(z - z_s)/l_0}$$
(4.19)

の表式を用いる。ここで、 z_s は地表面高度であり、 l_0 は支配混合距離である 1 . また、

$$S_M = B_1^{\frac{1}{2}} (1 - R_f)^{\frac{1}{2}} \tilde{S}_M^{\frac{1}{2}} \tilde{S}_M$$
 (4.20)

$$S_H = B_1^{\frac{1}{2}} \left(1 - R_f \right)^{\frac{1}{2}} \tilde{S}_M^{\frac{1}{2}} \tilde{S}_H \tag{4.21}$$

 $^{^{1}}$ dcpam の現在 (2010/02/20) のデフォルト値は $l_0 = 300 \text{ m}$ である.

である. \tilde{S}_H , \tilde{S}_M は,

$$\tilde{S}_H = \frac{\alpha_1 - \alpha_2 R_f}{1 - R_f} \tag{4.22}$$

$$\tilde{S}_M = \frac{\beta_1 - \beta_2 R_f}{\beta_3 - \beta_4 R_f} \tilde{S}_H \tag{4.23}$$

であり、ここで、 R_f はフラックスリチャードソン数であり、

$$R_f = \frac{1}{2\beta_2} \left\{ \beta_1 + \beta_4 R_i - \sqrt{(\beta_1 + \beta_4 R_i)^2 - 4\beta_2 \beta_3 R_i} \right\}$$
 (4.24)

と書ける. ここで R_i はリチャードソン数で

$$R_i = \frac{\frac{g}{\theta} \frac{\partial \theta}{\partial z}}{\left| \frac{\partial \mathbf{v}}{\partial z} \right|} \tag{4.25}$$

である. また,

$$\alpha_1 = 3A_2\gamma_1 \tag{4.26}$$

$$\alpha_2 = 3A_2 \left(\gamma_1 + \gamma_2 \right) \tag{4.27}$$

$$\beta_1 = A_1 B_1 (\gamma_1 - C_1) \tag{4.28}$$

$$\beta_2 = A_1 \left[B_1 \left(\gamma_1 - C_1 \right) + 6A_1 + 3A_2 \right] \tag{4.29}$$

$$\beta_3 = A_2 B_1 \gamma_1 \tag{4.30}$$

$$\beta_4 = A_2 \left[B_1 \left(\gamma_1 + \gamma_2 \right) - 3A_1 \right] \tag{4.31}$$

$$\gamma_1 = \frac{1}{3} - \frac{2A_1}{B_1} \tag{4.32}$$

$$\gamma_2 = \frac{B_2}{B_1} + \frac{6A_1}{B_1} \tag{4.33}$$

であり、 $(A_1, B_1, A_2, B_2, C_1) = (0.92, 16.6, 0.74, 10.1, 0.08)$ である (Mellor and Yamada, 1982).

4.1.2 バルク係数

バルク係数は, Louis et al. (1982) の方法に従って評価する.

中立もしくは安定 $(R_i \ge 0)$ な場合

中立, もしくは安定 $R_i \geq 0$ な場合には, バルク係数は下のように評価する².

$$C_d = a^2 \frac{1}{1 + 10R_i \frac{1}{\sqrt{1 + 5R_i}}} \tag{4.37}$$

$$C_h = a^2 \frac{1}{1 + 15R_i \sqrt{1 + 5R_i}} \tag{4.38}$$

$$a = \frac{k}{\log\left(\frac{z}{z_0}\right)} \tag{4.39}$$

ここで, z は地面からの距離, k はカルマン定数で $k=0.4, z_0$ は粗度長である. な お,z が基準等ポテンシャル面 (地球の場合はジオイド) からの距離ではないこと に注意.

$$C_d = a^2 \frac{1}{1 + 2bR_i \frac{1}{\sqrt{1 + dR_i}}} \tag{4.34}$$

$$C_h = a^2 \frac{1}{1 + 3bR_i\sqrt{1 + dR_i}} \tag{4.35}$$

$$C_{h} = a^{2} \frac{1}{1 + 3bR_{i}\sqrt{1 + dR_{i}}}$$

$$a = \frac{k}{\log\left(\frac{z + z_{0}}{z_{0}}\right)}$$

$$(4.35)$$

ここで, b=5, d=5 である. a の \log の中の分子が $z+z_0$ となっている理由は不明である.

²なお, 元論文 (Louis et al., 1982) では下のように表記されている.

不安定 $(R_i < 0)$ な場合

不安定 $R_i < 0$ な場合には、バルク係数は下のように評価する 3 .

$$C_d = a^2 \left(1 - \frac{10R_i}{1 + 75a^2 \sqrt{\frac{z}{z_0} |R_i|}} \right) \tag{4.42}$$

$$C_h = a^2 \left(1 - \frac{15R_i}{1 + 75a^2 \sqrt{\frac{z}{z_0} |R_i|}} \right) \tag{4.43}$$

離散表現 4.2

dcpam では、鉛直拡散は陰解法を用いて計算する. 運動量、熱の鉛直拡散方程式は 下のように離散化する.

$$\frac{u_k^{t+\Delta t} - u_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{m,x,k+\frac{1}{2}}^{t+\Delta t} - F_{m,x,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}$$
(4.44)

$$\frac{v_k^{t+\Delta t} - v_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{m,y,k+\frac{1}{2}}^{t+\Delta t} - F_{m,y,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}$$
(4.45)

$$\frac{u_k^{t+\Delta t} - u_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{m,x,k+\frac{1}{2}}^{t+\Delta t} - F_{m,x,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}$$

$$\frac{v_k^{t+\Delta t} - v_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{m,y,k+\frac{1}{2}}^{t+\Delta t} - F_{m,y,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}$$

$$\frac{T_k^{t+\Delta t} - T_k^{t-\Delta t}}{2\Delta t} = \frac{1}{C_p} g \frac{F_{h,k+\frac{1}{2}}^{t+\Delta t} - F_{h,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}$$
(4.44)

$$C_d = a^2 \left(1 - \frac{2bR_i}{1 + 3a^2bc\sqrt{\frac{z+z_0}{z_0}|R_i|}} \right)$$
 (4.40)

$$C_h = a^2 \left(1 - \frac{3bR_i}{1 + 3a^2bc\sqrt{\frac{z+z_0}{z_0}|R_i|}} \right)$$
 (4.41)

ここで, c=5 である. a の \log の中の分子が $z+z_0$ となっている理由は不明である.

³なお、元論文 (Louis et al., 1982) では下のように表記されている.

拡散フラックスは下のように離散化される.

$$F_{m,x,k+\frac{1}{2}} = -(TC)_{m,k+\frac{1}{2}} (u_{k+1} - u_k) \tag{4.47}$$

$$F_{m,y,k+\frac{1}{2}} = -(TC)_{m,k+\frac{1}{2}} (v_{k+1} - v_k)$$
(4.48)

$$F_{h,k+\frac{1}{2}} = -C_p P_{k+\frac{1}{2}} (TC)_{h,k+\frac{1}{2}} \left(\frac{T_{k+1}}{P_{k+1}} - \frac{T_k}{P_k} \right)$$
(4.49)

ここで, $2 < k < k_{max} - 1$ のとき,

$$(TC)_{m,k+\frac{1}{2}} = \rho_{k+\frac{1}{2}} K_{m,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_k}$$

$$(4.50)$$

$$(TC)_{h,k+\frac{1}{2}} = \rho_{k+\frac{1}{2}} K_{h,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_k}$$

$$(4.51)$$

k=1 のとき、

$$F_{m,x,k-\frac{1}{2}} = -(TC)_{m,k-\frac{1}{2}}u_1 \tag{4.52}$$

$$F_{m,y,k-\frac{1}{2}} = -(TC)_{m,k-\frac{1}{2}}v_1 (4.53)$$

$$F_{h,k-\frac{1}{2}} = -C_p P_{k-\frac{1}{2}} (TC)_{h,k-\frac{1}{2}} \left(\frac{T_k}{P_k} - \frac{T_s}{P_{k-\frac{1}{2}}} \right)$$
(4.54)

(4.55)

$$(TC)_{m,k-\frac{1}{2}} = \rho_s C_d |\boldsymbol{v}_k| \tag{4.56}$$

$$(TC)_{h,k-\frac{1}{\alpha}} = \rho_s C_h |\boldsymbol{v}_k| \tag{4.57}$$

$$\rho_s = \frac{p_s}{RT_0} \tag{4.58}$$

であり 4 , $k = k_{max}$ のとき,

$$F_{m,x,k_{max}+\frac{1}{2}} = 0 (4.59)$$

$$F_{m,y,k_{max}+\frac{1}{2}} = 0 (4.60)$$

$$F_{h,k_{max}+\frac{1}{2}} = 0 (4.61)$$

となる.

4.2.1 鉛直拡散係数

鉛直拡散係数, K_m , K_h , は … に示した式で計算する. ここでは, リチャードソン数と風速の鉛直シアーの離散表現を示すのみとする.

 4 最後は T_0 (大気の温度) なのかね? T_s ではなくて? たぶん, 考え方の問題だけ. どちらが悪いとも言えないだろうけど.

リチャードソン数

$$R_i = \frac{\frac{g}{\theta} \frac{\partial \theta}{\partial z}}{\left| \frac{\partial \mathbf{v}}{\partial z} \right|} \tag{4.62}$$

は、下のように離散化する.

$$R_{i,k+\frac{1}{2}} = \frac{g}{\theta_{k+\frac{1}{2}}} \frac{\theta_{k+1} - \theta_k}{z_{k+1} - z_k} \left| \frac{\partial \boldsymbol{v}}{\partial z} \right|_{k+\frac{1}{2}}^{-1}$$

$$(4.63)$$

$$\left| \frac{\partial \boldsymbol{v}}{\partial z} \right|_{k+\frac{1}{2}} = \sqrt{\left(\frac{u_{k+1} - u_k}{z_{k+1} - z_k} \right)^2 + \left(\frac{v_{k+1} - v_k}{z_{k+1} - z_k} \right)^2}$$
(4.64)

4.2.2 バルク係数

バルク係数は、… に示した式で計算する. ここでは、地表面のリチャードソン数の離散表現を示すのみとする.

リチャードソン数

$$R_i = \frac{\frac{g}{\theta} \frac{\partial \theta}{\partial z}}{\left| \frac{\partial \mathbf{v}}{\partial z} \right|} \tag{4.65}$$

は、地表面においては、下のように離散化する.

$$R_{i,\frac{1}{2}} = \frac{g}{\theta_s} \frac{\theta_1 - \theta_s}{z_{k+1} - z_s} \left| \frac{\partial \mathbf{v}}{\partial z} \right|_{\frac{1}{z}}^{-1}$$

$$(4.66)$$

$$\left| \frac{\partial \boldsymbol{v}}{\partial z} \right|_{\frac{1}{2}} = \sqrt{\left(\frac{u_{k_1} - u_s}{z_1 - z_s} \right)^2 + \left(\frac{v_{k_1} - v_s}{z_1 - z_s} \right)^2}$$
 (4.67)

$$\theta_s = \frac{T_s}{P_s} \tag{4.68}$$

$$P_s = \left(\frac{p_{00}}{p_s}\right)^{\kappa} \tag{4.69}$$

ここで, z_s は地表面の高度, T_s は惑星表面温度, p_s は惑星表面気圧である 5 .

 $^{^5}$ ここでは, R_i の計算に惑星表面温度を用いているが, 惑星表面上の大気の温度を用いる方法もあるのかもしれない. どちらが良いのかはよく分からない.

4.2.3 運動量拡散の差分方程式の整理

東西方向の運動量の鉛直拡散 ... を整理すると, $2 \le k \le k_{max} - 1$ のとき,

$$-(TC)_{m,k-\frac{1}{2}} \left(u_{k-1}^{t+\Delta t} - u_{k-1}^{t-\Delta t} \right)$$

$$+ \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}} \right) \left(u_k^{t+\Delta t} - u_k^{t-\Delta t} \right)$$

$$-(TC)_{m,k+\frac{1}{2}} \left(u_{k+1}^{t+\Delta t} - u_{k+1}^{t-\Delta t} \right)$$

$$= -\left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t} \right)$$

$$(4.70)$$

k=1 のとき、

$$\left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}}\right) \left(u_k^{t+\Delta t} - u_k^{t-\Delta t}\right)
- (TC)_{m,k+\frac{1}{2}} \left(u_{k+1}^{t+\Delta t} - u_{k+1}^{t-\Delta t}\right)
= -\left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(4.71)

 $k = k_{max}$ のとき,

$$-(TC)_{m,k-\frac{1}{2}} \left(u_{k-1}^{t+\Delta t} - u_{k-1}^{t-\Delta t} \right)$$

$$+ \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} \right) \left(u_k^{t+\Delta t} - u_k^{t-\Delta t} \right)$$

$$= -\left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t} \right)$$

$$(4.72)$$

となる.

これらをまとめると,

$$Ax_u = G_u \tag{4.73}$$

$$\boldsymbol{x}_{u} = \left(u_{1}^{t+\Delta t} - u_{1}^{t-\Delta t}, u_{2}^{t+\Delta t} - u_{2}^{t-\Delta t}, \dots, u_{k_{max}}^{t+\Delta t} - u_{k_{max}}^{t-\Delta t}\right), \tag{4.74}$$

$$G_u = (g_{u,1}, g_{u,2}, ..., g_{u,k_{max}}), (4.75)$$

$$g_{u,k} = -\left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t}\right) \tag{4.76}$$

ここで, $2 \le k \le k_{max} - 1$ のとき,

$$a_{k,k-1} = -(TC)_{m,k-\frac{1}{2}} (4.77)$$

$$a_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}}$$
(4.78)

$$a_{k,k+1} = -(TC)_{m,k+\frac{1}{2}} (4.79)$$

k=1 のとき、

$$a_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}}$$
(4.80)

$$a_{k,k+1} = -(TC)_{m,k+\frac{1}{2}} (4.81)$$

 $k = k_{max}$ のとき、

$$a_{k,k-1} = -(TC)_{m,k-\frac{1}{2}} (4.82)$$

$$a_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}}$$
 (4.83)

である.

南北風に関しては、東西風と同様に下のように書くことができる。

$$\mathbf{A}\mathbf{x}_v = \mathbf{G}_v \tag{4.84}$$

$$\boldsymbol{x}_{v} = \left(v_{1}^{t+\Delta t} - v_{1}^{t-\Delta t}, v_{2}^{t+\Delta t} - v_{2}^{t-\Delta t}, ..., v_{k_{max}}^{t+\Delta t} - v_{k_{max}}^{t-\Delta t}\right),$$
 (4.85)

$$G_v = (g_{v,1}, g_{v,2}, ..., g_{v,k_{max}}),$$
 (4.86)

$$G_{v} = (g_{v,1}, g_{v,2}, ..., g_{v,k_{max}}),$$

$$g_{v,k} = -\left(F_{m,y,k+\frac{1}{2}}^{t-\Delta t} - F_{m,y,k-\frac{1}{2}}^{t-\Delta t}\right)$$

$$(4.86)$$

である.

熱拡散の差分方程式の整理 4.2.4

熱の鉛直拡散の式 ... を整理すると, $2 \le k \le k_{max} - 1$ のとき,

$$-C_{p} \frac{P_{k-\frac{1}{2}}}{P_{k-1}} (TC)_{h,k-\frac{1}{2}} \left(T_{k-1}^{t+\Delta t} - T_{k-1}^{t-\Delta t} \right)$$

$$+ \left(-C_{p} \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_{p} \frac{P_{k-\frac{1}{2}}}{P_{k}} (TC)_{h,k-\frac{1}{2}} + C_{p} \frac{P_{k+\frac{1}{2}}}{P_{k}} (TC)_{h,k+\frac{1}{2}} \right) \left(T_{k}^{t+\Delta t} - T_{k}^{t-\Delta t} \right)$$

$$-C_{p} \frac{P_{k+\frac{1}{2}}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}} \left(T_{k+1}^{t+\Delta t} - T_{k+1}^{t-\Delta t} \right)$$

$$= -\left(F_{h,k+\frac{1}{2}}^{t-\Delta t} - F_{h,k-\frac{1}{2}}^{t-\Delta t} \right)$$

$$(4.88)$$

のとき, k = 1 のとき,

$$-C_{p}(TC)_{h,k-\frac{1}{2}}\left(T_{s}^{t+\Delta t}-T_{s}^{t-\Delta t}\right) + \left(-C_{p}\frac{1}{2\Delta t}\frac{p_{k+\frac{1}{2}}-p_{k-\frac{1}{2}}}{g} + C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k}}(TC)_{h,k+\frac{1}{2}} + C_{p}\frac{P_{k-\frac{1}{2}}}{P_{k}}(TC)_{h,k-\frac{1}{2}}\right)\left(T_{k}^{t+\Delta t}-T_{k}^{t-\Delta t}\right) - C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k+1}}(TC)_{h,k+\frac{1}{2}}\left(T_{k+1}^{t+\Delta t}-T_{k+1}^{t-\Delta t}\right) - \left(F_{h,k+\frac{1}{2}}^{t-\Delta t}-F_{h,k-\frac{1}{2}}^{t-\Delta t}\right)$$

$$= -\left(F_{h,k+\frac{1}{2}}^{t-\Delta t}-F_{h,k-\frac{1}{2}}^{t-\Delta t}\right)$$

$$(4.89)$$

となり, $k = k_{max}$ のとき,

$$-C_{p} \frac{P_{k-\frac{1}{2}}}{P_{k-1}} (TC)_{h,k-\frac{1}{2}} \left(T_{k-1}^{t+\Delta t} - T_{k-1}^{t-\Delta t} \right)$$

$$+ \left(-C_{p} \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_{p} \frac{P_{k-\frac{1}{2}}}{P_{k}} (TC)_{h,k-\frac{1}{2}} \right) \left(T_{k}^{t+\Delta t} - T_{k}^{t-\Delta t} \right)$$

$$= - \left(F_{h,k+\frac{1}{2}}^{t-\Delta t} - F_{h,k-\frac{1}{2}}^{t-\Delta t} \right)$$

$$(4.90)$$

となる.

これらをまとめると

$$\boldsymbol{B}_{a}\boldsymbol{x}_{a} = \boldsymbol{G}_{a} \tag{4.91}$$

$$\boldsymbol{x}_{a} = \left(T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}, T_{2}^{t+\Delta t} - T_{2}^{t-\Delta t}, ..., T_{k_{max}}^{t+\Delta t} - T_{k_{max}}^{t-\Delta t}\right) 4.92$$

$$G_a = (g_{a,1}, g_{a,2}, ..., g_{a,k_{max}}),$$
 (4.93)

$$G_{a} = (g_{a,1}, g_{a,2}, ..., g_{a,k_{max}}),$$

$$g_{a,k} = -\left(F_{a,k+\frac{1}{2}}^{t-\Delta t} - F_{a,k-\frac{1}{2}}^{t-\Delta t}\right)$$

$$(4.93)$$

と書くことができる. ここで. $2 < k < k_{max} - 1$ のとき.

$$b_{a,k,k-1} = -C_p \frac{P_{k-\frac{1}{2}}}{P_{k-1}} (TC)_{h,k-\frac{1}{2}}$$

$$\tag{4.95}$$

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k-\frac{1}{2}}}{P_k} (TC)_{h,k-\frac{1}{2}} + C_p \frac{P_{k+\frac{1}{2}}}{P_k} (TC)_{h,k-\frac{1}{2}}$$

$$b_{a,k,k+1} = -C_p \frac{P_{k+\frac{1}{2}}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}}$$

$$\tag{4.97}$$

であり, k=1 のとき,

$$b_{a,k,k-1} = -C_p(TC)_{h,k-\frac{1}{2}} (4.98)$$

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{q} + C_p \frac{P_{k+\frac{1}{2}}}{P_k} (TC)_{h,k+\frac{1}{2}} + C_p \frac{P_{k-\frac{1}{2}}}{P_k} (TC)_{h,k} (4\frac{1}{2}99)$$

$$b_{a,k,k+1} = -C_p \frac{P_{k+\frac{1}{2}}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}}$$

$$(4.100)$$

であり, $k = k_{max}$ のとき,

$$b_{a,k,k-1} = -C_p \frac{P_{k-\frac{1}{2}}}{P_{k-1}} (TC)_{h,k-\frac{1}{2}}$$
(4.101)

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k-\frac{1}{2}}}{P_k} (TC)_{h,k-\frac{1}{2}}$$
(4.102)

である.

ここで、 B_a は k_{max} 行 $k_{max}+1$ 列の行列であり、この式だけでは未知数が方程式数よりも多いために閉じない。方程式を閉じるために、以下に述べる惑星表面での熱収支式を用いる。

4.3 参考文献

- Louis, J-F., M. Tiedtke, and J-F. Geleyn, 1982: A short history of the PBL parameterization at ECMWF, Workshop on Planetary Boundary Layer Parameterization, 59-80, ECMWF, Reading, U.K..
- Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers, *J. Atmos. Sci.*, **31**, 1791–1806.
- Mellor, G. L., and T. Yamada, 1982: Development of a turbulent closure model for geophysical fluid problems, *Rev. Geophys. Space Phys.*, **20**, 851–875.

第5章 熱収支を統合した連立方程式 の構成

5.1 離散表現

?? 節において、大気中の熱拡散における収支について書いた. 既に書いたように、これは必ずしも閉じておらず、適宜組み合わせて連立方程式を構成する必要がある.

5.1.1 惑星表面に 1 層モデルを用いる場合

ここでは、惑星表面に 1 層モデルを用いる場合を考える.

このときは、大気中の熱拡散の収支式 (4.91)、惑星表面の 1 層モデルの熱収支式 (??) を同時に解く、これらの式をまとめると下のように整理される。

$$Dx_{hq} = G_{hq} (5.1)$$

$$\mathbf{x}_{hq} = \left(T_s^{t+\Delta t} - T_s^{t-\Delta t}, T_1^{t+\Delta t} - T_1^{t-\Delta t}, T_2^{t+\Delta t} - T_2^{t-\Delta t}, ..., T_{k_{max}}^{t+\Delta t} - T_{k_{max}}^{t-\Delta t}\right),$$

$$= \left(\Delta T_s, \right)$$
(5.2)

$$\Delta T_1, \Delta T_2, \dots, \Delta T_{k_{max}}), \tag{5.3}$$

$$G_{hq} = (g_{s,0}, g_{h,1}, g_{h,2}, ..., g_{h,k_{max}}),$$
 (5.4)

D の各成分は, k=0 のとき,

$$d_{k,k-1} = b_{s,k,k-1} (5.5)$$

$$d_{k,k} = b_{s,k,k} (5.6)$$

$$d_{k,k+1} = b_{s,k,k+1} (5.7)$$

であり, $k \ge 1$ のとき,

$$d_{k,k-1} = b_{a,k,k-1} (5.8)$$

$$d_{k,k} = b_{a,k,k} (5.9)$$

$$d_{k,k+1} = b_{a,k,k+1} (5.10)$$

である.

この連立一次方程式式を解いて求めた $oldsymbol{x}_{hq}$ を用いて、時刻 n+1 における値を

$$T_k^{n+1} = T_k^{n-1} + \Delta T_k (5.11)$$

のように計算するが、惑星表面温度は

$$T_s^{n+1} = T_s^n + \Delta T_s \tag{5.12}$$

のように計算する1.

付 録 A 惑星大気の物理定数

A.1 地球大気の物理定数

地球大気の基本的な物理定数を以下に示す.

惑星半径	a	m	6.37×10^{6}
重力加速度	g	${\rm m~s^{-2}}$	9.8
乾燥大気の定圧比熱	C_p	${ m J~kg^{-1}~K^{-1}}$	1004.6
乾燥大気の気体定数	R	${ m J~kg^{-1}~K^{-1}}$	287.04
蒸発潜熱	L	$\rm J~kg^{-1}$	2.5×10^{6}
水蒸気定圧比熱	C_v	${ m J~kg^{-1}~K^{-1}}$	1810.
水蒸気気体定数	R_v	${ m J~kg^{-1}~K^{-1}}$	461.
液体水の密度	$d_{ m H_2O}$	${ m J~kg^{-1}~K^{-1}}$	1000.
水蒸気分子量比	ϵ_v		0.622
仮温度の係数	$\delta_v = \epsilon_v^{-1} - 1$		0.606
乾燥大気の定圧比熱と気体定数の比	$\kappa = R/C_p$		0.286
Kálman 定数	k		0.4

付 録B 座標系・変換公式に関する 解説

B.1 球面調和函数

ここでは連続系での球面調和函数を定義し、スペクトル計算の理解に必要な性質を挙げ、証明する.

まず球面調和函数を定義し、次いで球面調和函数が完全直交系をなすことを主張する.このことにより、球面上に分布するあらゆる連続関数が球面調和函数の重ね合わせで一意的に表されることになる.

球面調和函数は2次元ラプラシアンに関する固有関数であり、このために全波数という概念が生まれる.参考までにこのことも記しておく.

さらに、球面調和函数を空間微分した結果も書いておく.

- 1. 定義と性質 (球面調和函数, Legendre 函数, Legendre 陪函数)
- 2. 空間微分
- 3. 全波数の概念

また、イメージをつかむために、ルジャンドル(陪)関数のグラフを示す.

B.1.1 定義と性質

ここでは、岩波公式集 1 の Legendre 函数・陪函数 \tilde{P}_n^m , 2 で規格化した Legendre 函数・陪函数 P_n^m , 4π で規格化した球面調和函数 Y_n^m の順に定義する. さらにそれらの性質として、従う微分方程式、漸下式、完全規格直交性について述べる.

岩波公式集の Legendre 函数・陪函数 $ilde{P}_n^m$

● 定義

岩波公式集によると Legendre 函数・陪函数 $\tilde{P}_n^m(\mu)$ は $-1 \le \mu \le 1$ において次式で定義される (Rodrigues の公式).

$$\tilde{P}_n^m \equiv \frac{(1-\mu^2)^{\frac{|m|}{2}}}{2^n n!} \frac{d^{n+|m|}}{d\mu^{n+|m|}} (\mu^2 - 1)^n.$$
 (B.1)

ただし, m,n は $0 \le |m| \le n$ を満たす整数である. Legendre 函数 \tilde{P}_n^0 を \tilde{P}_n とも書く.

● Legendre 函数・陪函数の満たす方程式

 $\tilde{P}_n^m(\mu)$ は次の方程式を満たす.

$$\frac{d}{d\mu} \left\{ (1 - \mu^2) \frac{d}{d\mu} \tilde{P}_n^m \right\} + \left\{ n(n+1) - \frac{m^2}{1 - \mu^2} \right\} \tilde{P}_n^m = 0.$$
 (B.2)

ただし, m, n は $0 \le |m| \le n$ を満たす整数である.

Legendre 函数・陪函数の従う漸化式

 $ilde{P}_n^m(\mu)$ は次の漸化式に従う.

$$(n - |m| + 1)\tilde{P}_{n+1}^m - (2n+1)\mu\tilde{P}_n^m + (n+|m|)\tilde{P}_{n-1}^m = 0.$$
 (B.3)

ただし, m, n は $0 \le |m| \le n - 1$, または m = n = 0 を満たす整数である.

さらに、次の関係式が成り立つ.

$$(1 - \mu^2) \frac{d}{d\mu} \tilde{P}_n^m = (n + |m|) \tilde{P}_{n-1}^m - n\mu \tilde{P}_n^m.$$
 (B.4)

ただし, m, n は $0 \le |m| \le n - 1$ を満たす整数である.

 $^{^{-1}}$ 森口、宇田川、一松編「数学公式 III 」,1960 を指す.

• 完全規格直交性

 $ilde{P}_n^m(\mu) \; (n=|m|,|m+1,\cdots) \;$ は次の直交関係を満たす.

$$\int_{-1}^{1} \tilde{P}_{n}^{m}(\mu) \tilde{P}_{n'}^{m}(\mu) d\mu = \frac{2}{2n+1} \frac{(n+|m|)!}{(n-|m|)!} \delta_{nn'}.$$
 (B.5)

ただし, m, n, n' は $0 \le |m| \le n, n'$ を満たす整数である.

 $-1 \leq \mu \leq 1$ で定義される連続関数 $A(\mu)$ は $\{\tilde{P}_n^m|n=|m|,|m+1|,\cdots\}$ を用いて

$$A(\mu) = \sum_{n=|m|}^{\infty} \tilde{A}_n^m \tilde{P}_n^m(\mu), \tag{B.6}$$

$$\tilde{A}_{n}^{m} = \frac{2n+1}{2} \frac{(n-|m|)!}{(n+|m|)!} \int_{-1}^{1} A(\mu) \tilde{P}_{n}^{m}(\mu) d\mu$$
 (B.7)

と表される.

2 で規格化した Legendre 函数・陪函数 P_n^m

● 定義

2 で規格化した Legendre 函数・陪函数 $P_n^m(\mu)$ は $-1 \le \mu \le 1$ において次式で定義される.

$$P_n^m \equiv \sqrt{\frac{(2n+1)(n-|m|)!}{(n+|m|)!}} \tilde{P}_n^m = \sqrt{\frac{(2n+1)(n-|m|)!}{(n+|m|)!}} \frac{(1-\mu^2)^{\frac{|m|}{2}}}{2^n n!} \frac{d^{n+|m|}}{d\mu^{n+|m|}} (\mu^2 - 1)^n.$$
(B.8)

ただし, m,n は $0 \le |m| \le n$ を満たす整数である. Legendre 函数 P_n^0 を P_n とも書く.

● Legendre 函数・陪函数の満たす方程式

 $P_n^m(\mu)$ は、次の方程式を満たす。

$$\frac{d}{d\mu} \left\{ (1 - \mu^2) \frac{d}{d\mu} P_n^m \right\} + \left\{ n(n+1) - \frac{m^2}{1 - \mu^2} \right\} P_n^m = 0.$$
 (B.9)

ただし, m, n は 0 < |m| < n を満たす整数である.

● Legendre 函数・陪函数の従う漸化式

 $P_n^m(\mu)$ は、次の漸化式に従う.

$$(n - |m| + 1)\sqrt{\frac{1}{2n+3} \frac{(n+1+|m|)!}{(n+1-|m|)!}} P_{n+1}^{m} - (2n+1)\sqrt{\frac{1}{2n+1} \frac{(n+|m|)!}{(n-|m|)!}} \mu P_{n}^{m}$$

$$+ (n+|m|)\sqrt{\frac{1}{2n-1} \frac{(n-1+|m|)!}{(n-1-|m|)!}} P_{n-1}^{m} = 0, \qquad (B.10)$$

$$P_{n+1}^{m} = \sqrt{\frac{(2n+1)(2n+3)}{(n-|m|+1)(n+|m|+1)}} \mu P_{n}^{m}$$

$$-\sqrt{\frac{(2n+1)(2n+3)}{(n-|m|+1)(n+|m|+1)}} \sqrt{\frac{(n-|m|)(n+|m|)}{(2n+1)(2n-1)}} P_{n-1}^{m}. \qquad (B.11)$$

ただし, m, n は $0 \le |m| \le n-1$, または m=n=0 を満たす整数である. さらに次の関係式が成り立つ.

$$(1 - \mu^2) \frac{d}{d\mu} P_n^m = (n + |m|) \sqrt{\frac{(n - |m|)(2n + 1)}{(n + |m|)(2n - 1)}} P_{n-1}^m - n\mu P_n^m.$$
 (B.12)

ただし, m, n は $0 \le |m| \le n - 1$ を満たす整数である.

● 完全規格直交性

 $P_n^m(\mu)$ $(n=|m|,|m+1,\cdots)$ は次の直交関係を満たす.

$$\int_{-1}^{1} P_n^m(\mu) P_{n'}^m(\mu) d\mu = 2\delta_{nn'}.$$
 (B.13)

ただし, m, n, n' は $0 \le |m| \le n, n'$ を満たす整数である.

 $-1 \leq \mu \leq 1$ で定義される連続関数 $A(\mu)$ は $\{P_n^m|n=|m|,|m+1|,\cdots\}$ を用いて

$$A(\mu) = \sum_{n=|m|}^{\infty} \tilde{A}_n^m P_n^m(\mu), \tag{B.14}$$

$$\tilde{A}_{n}^{m} = \frac{1}{2} \int_{-1}^{1} A(\mu) P_{n}^{m}(\mu) d\mu$$
 (B.15)

と表される.

● 定義

球面調和函数 $Y_n^m(\lambda,\varphi)$ は Legendre 函数 $P_n^m(\sin\varphi)$,三角関数 $\exp(im\lambda)$ を用いて次のように定義される.

$$Y_n^m(\lambda, \varphi) \equiv P_n^m(\sin \varphi) \exp(im\lambda). \tag{B.16}$$

ただし, m, n は $0 \le |m| \le n$ を満たす整数である.

• 球面調和函数の満たす方程式

 $Y_n^m(\lambda,\varphi)$ は次の方程式を満たす.

$$\left[\frac{1}{\cos\varphi}\frac{\partial}{\partial\varphi}\left(\cos\varphi\frac{\partial}{\partial\varphi}\right) + \frac{1}{\cos^2\varphi}\frac{\partial^2}{\partial\lambda^2} + n(n+1)\right]Y_n^m = 0.$$
 (B.17)

すなわち,

$$\left[\frac{\partial}{\partial\mu}\left((1-\mu^2)\frac{\partial}{\partial\mu}\right) + \frac{1}{1-\mu^2}\frac{\partial^2}{\partial\lambda^2} + n(n+1)\right]Y_n^m = 0$$
 (B.18)

の解である. ただし, m, n は $0 \le |m| \le n$ を満たす整数である.

● 完全規格直交性

 Y_n^m は次の直交関係を満たす.

$$\int_{-1}^{1} Y_n^m(\lambda, \varphi) Y_{n'}^{m'*}(\lambda, \varphi) d(\sin \varphi) d\lambda = 4\pi \delta_{mm'} \delta_{nn'}.$$
 (B.19)

ただし、m,m',n,n' は $0\leq |m|\leq n$ と $0\leq |m'|\leq n'$ とを満たす整数である. 球面上で定義される連続関数 $A(\lambda,\varphi)$ は $\{Y_n^m|m=0,1,2,\cdots,\ n=|m|,|m+1|,\cdots\}$ を用いて

$$A(\lambda, \varphi) = \sum_{m=0}^{\infty} \sum_{n=|m|}^{\infty} \tilde{A}_n^m Y_n^m(\lambda, \varphi),$$
 (B.20)

$$\tilde{A}_n^m = \frac{1}{4\pi} \int_{-1}^1 d(\sin\varphi) \int_0^{2\pi} d\lambda A(\lambda, \varphi) Y_n^{m*}(\lambda, \varphi)$$
 (B.21)

と表される.

 $[\]frac{1}{2}\exp(im\lambda)$ は $\int_0^{2\pi}\exp(im\lambda)\exp(-im'\lambda)d\lambda=2\pi\delta_{mm'}$ を満たす. ただし,m,m' は整数である.

B.1.2 球面調和函数の空間微分

ここでは、球面調和函数 $Y_n^m(arphi,\lambda)$ の

- x 微分
- y 微分
- 2次元ラプラシアン

の計算をする.

x 微分

$$\frac{1}{r\cos\varphi}\frac{\partial Y_n^m}{\partial\lambda} = \frac{1}{r\cos\varphi}\frac{\partial}{\partial\lambda}\left(P_n^m(\sin\varphi)\exp(im\lambda)\right) = \frac{im}{r\cos\varphi}P_n^m(\sin\varphi)\exp(im\lambda). \tag{B.22}$$

y 微分

$$\frac{1}{r}\frac{\partial Y_n^m}{\partial \varphi} = \frac{1}{r}\frac{\partial}{\partial \varphi}\left(P_n^m(\sin\varphi)\exp(im\lambda)\right) = \frac{\sqrt{1-\mu^2}}{r}\frac{d}{d\mu}P_n^m(\mu)\exp(im\lambda). \quad (B.23)$$

2次元ラプラシアン

$$\begin{split} \nabla_{H}^{2} Y_{n}^{m} &\equiv \frac{1}{r^{2}} \left[\frac{\partial}{\partial \mu} \left((1 - \mu^{2}) \frac{\partial}{\partial \mu} \right) + \frac{1}{1 - \mu^{2}} \frac{\partial^{2}}{\partial \lambda^{2}} \right] Y_{n}^{m} \\ &= \frac{1}{r^{2}} \left[\frac{1}{\cos \varphi} \frac{\partial}{\partial \varphi} \left(\cos \varphi \frac{\partial}{\partial \varphi} \right) + \frac{1}{\cos^{2} \varphi} \frac{\partial^{2}}{\partial \lambda^{2}} \right] Y_{n}^{m} \\ &= -\frac{n(n+1)}{r^{2}} Y_{n}^{m} \end{split} \tag{B.24}$$

B.1.3 コメント — 全波数について

球面調和函数 $Y_n^m(\lambda,\varphi)$ において n のことを全波数と呼ぶ.

全波数には、座標系の回転に関して不変である、という特徴がある。すなわち、任意の $Y_n^m(\lambda,\varphi)$ は回転して得られる座標系 (λ',φ') における全波数 n の球面調和函数 $\{Y_n^m(\lambda',\varphi')|m=-n,-n+1,\cdots,n\}$ の和で表現できる :

$$Y_n^m(\lambda, \varphi) = \sum_{m'=-n}^n A_n^{m'} Y_n^{m'*}(\lambda', \varphi'). \tag{B.25}$$

のである 3 . この特徴は、球面調和函数が 2 次元ラプラシアンの固有値であることによっている 4 .

 $^{^3}$ この特徴を言い替えれば、全波数 n の球面調和函数の重ね合わせで表現できる分布関数は座標系を回転させた系においても全波数 n の球面調和函数の重ね合わせで表現できることになる.

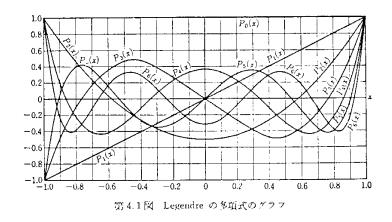
 $^{^4}abla_H^2\equivrac{1}{r^2}\left[rac{\partial}{\partial arphi}\left(\cosarphirac{\partial}{\partial arphi}
ight)+rac{1}{\cos^2arphi}rac{\partial^2}{\partial \lambda^2}
ight]$ の,固有値を $-rac{n(n+1)}{r^2}$ とする固有関数であることと,スカラー演算子 $abla_H^2$ が座標系の回転に関して不変な演算子であることとに起因する. すなわち, $abla_H^2$ が解析系の回転に関して不変な演算子であることとに起因する. すなわち, $abla_H^2$ が解析系の回転に関して不変な演算子であることとに起因する.

すなわち, $\nabla^2_H Y^m_n(\lambda,\varphi)=-\frac{n(n+1)}{r^2}Y^m_n(\lambda,\varphi)$ より,球面調和函数 $Y^m_n\exp(im\lambda)$ は固有値を $-\frac{n(n+1)}{r^2}$ とする ∇^2_H の固有関数である。 $\{Y^m_n|n=0,1,2,\cdots,\ m=-n,-n+1,\cdots,n\}$ の完全直交性より, $\{Y^m_n|m=-n,-n+1,\cdots,n\}$ は $\nabla^2_H f=-\frac{n(n+1)}{r^2}f$ の解空間を張っている基底である。 座標系を回転させて,新たな座標系での球面調和函数 $Y^m_n(\lambda',\varphi')$ の和の形で前の座標系での球面調和函数 $Y^m_n(\lambda,\varphi)$ を表現することを考えよう.

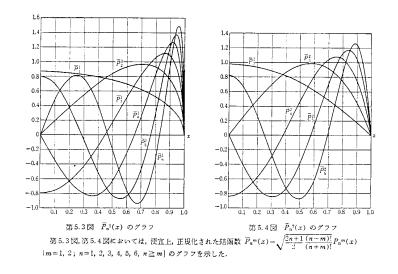
絶対系で見て同じ位置の値を比べると, 2 次元ラプラシアンを演算した値は不変なので, 前の座標系での球面調和函数 $Y_n^m(\lambda',\varphi')$ は新たな座標系においても $\nabla_H^{'2}Y_n^m=-\frac{n(n+1)}{r^2}Y_n^m$ の解である. 新たな座標系の球面調和函数の集合 $\{Y_n^m(\lambda',\varphi')|m=-n,-n+1,\cdots,n\}$ も $\nabla_H^{'2}Y_n^m=-\frac{n(n+1)}{r^2}Y_n^m$ の解空間の基底である. したがって, 前の座標系の球面調和函数は新たな座標系の球面調和函数の和の形で書ける.

B.1.4 グラフ

 $P_n^m(\mu)$ の概形をつかむために、2 で規格化した $P_n, P_n^1, P_n^{2\ 5}$ のグラフを示す.



岩波公式集の Legendre 函数 \tilde{P}_n のグラフ (森口, 宇田川, 一松, 1960)



Legendre 函数 $\overline{P_n^1}=P_n^1/\sqrt{2},\overline{P_n^2}=P_n^2/\sqrt{2}$ のグラフ (森口, 宇田川, 一松, 1960)

^{5(2005/4/4} 石渡) 関数形も書いておきたい. グラフは自分で描きたい.

B.2 微分公式, GCM の変数の微分関係式

ここでは、スカラー量、ベクトルの微分を計算する. さらにそれらを元に、発散 D、 渦度 ζ 、速度ポテンシャル χ 、流線関数 ψ と (u,v) との関係を付ける.

B.2.1 スカラー量の微分

スカラー量 $f(\lambda,\varphi)$ の x 微分は $\frac{1}{r\cos\varphi}\frac{\partial f}{\partial\lambda}$ で与えられる.

$$f$$
 の y 微分は $\frac{1}{r}\frac{\partial f}{\partial \varphi}\left(=\frac{\cos \varphi}{r}\frac{\partial f}{\partial \mu}\right)$ で与えられる.

fの2次元ラプラシアンは

$$\nabla_{H}^{2} f \equiv \frac{1}{r^{2}} \left[\frac{1}{\cos \varphi} \frac{\partial}{\partial \varphi} \left(\cos \varphi \frac{\partial}{\partial \varphi} \right) + \frac{1}{\cos^{2} \varphi} \frac{\partial^{2}}{\partial \lambda^{2}} \right] f$$

$$= \frac{1}{r^{2}} \left[\frac{\partial}{\partial \mu} \left\{ (1 - \mu^{2}) \frac{\partial}{\partial \mu} \right\} + \frac{1}{1 - \mu^{2}} \frac{\partial^{2}}{\partial \lambda^{2}} \right] f$$
(B.26)

で与えられる.

B.2.2 ベクトル量の微分

2次元ベクトル場 $\boldsymbol{v}=(v_1,v_2)$ の水平発散は

$$\operatorname{div}_{H} \boldsymbol{v} \equiv \frac{1}{r \cos \varphi} \frac{\partial v_{1}}{\partial \lambda} + \frac{1}{r \cos \varphi} \frac{\partial}{\partial \varphi} (v_{2} \cos \varphi)$$

$$= \frac{1}{r \sqrt{1 - \mu^{2}}} \frac{\partial v_{1}}{\partial \lambda} + \frac{1}{r} \frac{\partial}{\partial \mu} (\sqrt{1 - \mu^{2}} v_{2})$$
(B.27)

で与えられる.

v の回転の r 成分は、

$$(\operatorname{rot} \boldsymbol{v})_{r} \equiv \frac{1}{r \cos \varphi} \frac{\partial v_{2}}{\partial \lambda} - \frac{1}{r \cos \varphi} \frac{\partial}{\partial \varphi} (v_{1} \cos \varphi)$$

$$= \frac{1}{r \sqrt{1 - \mu^{2}}} \frac{\partial v_{2}}{\partial \lambda} - \frac{1}{r} \frac{\partial}{\partial \mu} (\sqrt{1 - \mu^{2}} v_{1})$$
(B.28)

で与えられる.

以上で得られた微分公式を元に、以下に実際にGCMで使用する便利な微分の公式を並べておく.

B.2.3 発散

水平分布する速度場の水平発散 D を u, v を用いて表す

$$D = \frac{1}{r\cos\varphi} \frac{\partial u}{\partial\lambda} + \frac{1}{r\cos\varphi} \frac{\partial}{\partial\varphi} (v\cos\varphi).$$
 (B.29)

B.2.4 渦度

水平分布する速度場の渦度 ζ を u, v を用いて表す

$$\zeta = \frac{1}{r\cos\varphi} \frac{\partial v}{\partial \lambda} - \frac{1}{r\cos\varphi} \frac{\partial}{\partial \varphi} (u\cos\varphi). \tag{B.30}$$

$\mathbf{B.2.5}$ 速度ポテンシャル, 流線関数と (u,v)

速度ポテンシャル χ , 流線関数 ψ は

$$D \equiv \nabla_H^2 \chi, \tag{B.31}$$

$$\zeta \equiv \nabla_H^2 \psi \tag{B.32}$$

で定義される. (u,v) を χ,ψ で表す.

$$u = -\frac{1}{r}\frac{\partial \psi}{\partial \varphi} + \frac{1}{r\cos\varphi}\frac{\partial \chi}{\partial \lambda},\tag{B.33}$$

$$v = \frac{1}{r\cos\varphi} \frac{\partial\psi}{\partial\lambda} + \frac{1}{r} \frac{\partial\chi}{\partial\varphi}$$
 (B.34)

となる.

B.3 Legendre 函数 P_n の性質

ここでは Legendre 函数 P_n の性質である

- 1. n-1 次以下の多項式との積を $-1 < \mu < 1$ まで積分すると零になること
- 2. $P_n(\mu)$ が $-1 < \mu < 1$ に n 個の零点を持つこと,

を記す. 1 より Gauss 格子を定義することが保証される. また, 1, 2 は共に Gauss-Legendre の公式の証明に用いられる.

B.3.1 多項式とLegendre 函数の積の積分

 $P_n(\mu)$ は, μ の n 次多項式である. n-1 次以下の任意の多項式は $P_0\sim P_{n-1}$ の和で表されること, P_n の直交性から明らかに, n-1 次以下の任意の多項式 $f(\mu)$ との積を積分すると

$$\int_{-1}^{1} f(\mu) P_n(\mu) d\mu = 0$$
 (B.35)

が成り立つことがわかる.

B.3.2 Legendre 函数の零点

 P_n は $-1 < \mu < 1$ に n 個の互いに異なる零点を持っている。このことについて、以下に証明しておく、(寺沢, 1983 の 10.7 節より)

- 1. $f(x) = (x-1)^n(x+1)^n$ を導入する.
- 2. f=0 の解は, x=-1,1 である. ゆえに, Rolle の定理により, f' はある α ($-1<\alpha<1$) で $f'(\alpha)=0$ となる. $f'=2nx(x^2-1)^{n-1}$ より, f'=0 の解は $x=-1,\alpha,1$ のみである.
- 3. 同様に, f''=0 の解は $x=-1,\beta_1,\beta_2,1$ ($-1<\beta_1<\beta_2<1$) のみ.
- 4. 以上を繰り返すと, $f^{(n)}=0$ の解は -1 と 1 の間で互いに異なる n 個の解を持つ. (x=-1,1 は解でないことに注意せよ.)
- 5. したがって, $P_n=\frac{1}{2^n n!}\frac{d^n}{d\mu^n}(\mu^2-1)^n$ は-1 と 1 の間で互いに異なる n 個の解を持つ. (証明終り)

この零点の求め方としては, $x_j = \cos \frac{j-1/2}{n} \pi$ を近似解として Newton 法を用いるという方法がある.

B.4 積分評価

B.4.1 Gauss の台形公式

ここでは Gauss の台形公式を示す.

波数 M 以下の三角函数で表現される $g(\lambda)$ ($0 \le \lambda < 2\pi$)

$$g(\lambda) = \sum_{m=-M}^{m=M} g_m \exp(im\lambda)$$
 (B.36)

について M < I を満たすように I をとると

$$\frac{1}{2\pi} \int_0^{2\pi} g(\lambda) d\lambda = \frac{1}{I} \sum_{n=1}^I g(\lambda_n),$$

$$\lambda_n = \frac{2\pi(n-1)}{I} \quad (n=1,2,\cdots,I)$$
(B.37)

が成り立つ. これを Gauss の台形公式という.

より実用的な公式は、

$$\sum_{n=1}^{I} \exp(im\lambda_n) = \begin{cases} I & (m=0), \\ 0 & (0 < |m| < I), \end{cases}$$

$$\lambda_n = \frac{2\pi(n-1)}{I} \quad (n=1, 2, \dots, I)$$
(B.38)

である. この証明は, I>M (|m| の最大値) より $m\neq 0$ の時には $\exp(im\lambda_n)=\exp\left(\frac{2\pi im(n-1)}{I}\right)$ において, 全ての n について m(n-1) が I の整数倍になることがないことを考慮 すると明らかである (m,n-1 はともに I よりも小さい整数なので, m(n-1) は I の整数倍にならない) 6 .

以下に Gauss の台形公式の証明を記す、まず、左辺を計算すると、

$$\frac{1}{2\pi} \int_{0}^{2\pi} g(\lambda) d\lambda = \sum_{m=-M}^{M} \frac{1}{2\pi} g_m \int_{0}^{2\pi} \exp(im\lambda) d\lambda = g_0$$
 (B.40)

$$\sum_{n=1}^{I} \exp\left\{im \frac{2\pi(n-1)}{I}\right\} = \frac{1 - \left(e^{\frac{im2\pi}{I}}\right)^{I}}{1 - e^{\frac{im2\pi}{I}}} = \frac{1 - e^{im2\pi}}{1 - e^{\frac{im2\pi}{I}}} = 0$$
 (B.39)

⁶等比級数の和を直接計算しても良い.

である。ここで、 $\int_0^{2\pi} \exp(im\lambda) d\lambda$ は m=0 の項しか残らないことを使った。一方右辺は

$$\frac{1}{I} \sum_{n=1}^{I} g(\lambda_n) = \frac{1}{I} \sum_{n=1}^{I} \sum_{m=-M}^{M} g_m \exp(im\lambda_n)$$

$$= g_0 + \sum_{m=-M, m \neq 0}^{M} \frac{g_m}{I} \sum_{n=1}^{I} \left(\exp(\frac{2\pi im}{I}) \right)^{n-1}.$$
(B.41)

ここで、上に示した「より実用的な公式」により

$$\sum_{n=1}^{I} \left(\exp(\frac{2\pi i m}{I}) \right)^{n-1} = 0 \quad (m \neq 0)$$
 (B.42)

が成り立つ. したがって.

$$\frac{1}{2\pi} \int_0^{2\pi} g(\lambda) d\lambda = \frac{1}{I} \sum_{n=1}^I g(\lambda_n)$$
 (B.43)

となる.

B.4.2 Gauss-Legendre の公式

 $f(\mu)$ を 2J-1 次以下の多項式とする. P_n を 2 で規格化した n 次の Legendre 函数とする. このとき, $\int_{-1}^1 f d\mu$ は P_J の零点である Gauss 格子 μ_f ($j=1,2,\cdots,J$) における f の値 $f(\mu_j)$ のみを用いて, 次式にもとづいて正確に評価することができる.

$$\int_{-1}^{1} f(\mu)d\mu = 2\sum_{j=1}^{J} f(\mu_j)w_j,$$
(B.44)

$$w_j = \frac{1}{2} \int_{-1}^{1} \frac{P_J(\mu)}{(\mu - \mu_j) P'_J(\mu_i)} d\mu = \frac{(2J - 1)(1 - \mu_j^2)}{(JP_{J-1}(\mu_j))^2}.$$
 (B.45)

ここで, w_i は Gauss 荷重と呼ばれる.

以下では上の式を証明する. ただし, Legendre 函数としては, 最初は岩波公式集の Legendre 函数 $\tilde{P_n}$ を用い, 最後に 2 で規格化した Legendre 函数 P_n に直すことに する 7

 $^{^7}$ 混乱を招かぬよう、このような手続きを踏む.実際、公式集を含む他の文献には \tilde{P}_n^m の公式が書かれていることが多いので、このように書く方が他と参照しやすいであろう.

STEP 1 Lagrange 補間の導入

 $f(\mu)$ を K 次多項式 ($0 \le K \le 2J-1$) とする. \tilde{P}_n を岩波公式集の Legendre 函数 (Rodrigues の公式) とする.

$$\int_{-1}^{1} \tilde{P}_{n}(\mu)\tilde{P}_{n'}(\mu)d\mu = \frac{2}{2n+1}\delta_{nn'}.$$
 (B.46)

 $L(\mu)$ を, $f(\mu_i)$ を Lagrange 補間公式にしたがって補間した多項式として定義する.

$$L(\mu) \equiv \sum_{j=1}^{J} f(\mu_j) \prod_{k=1, k \neq j}^{J} \frac{\mu - \mu_k}{\mu_j - \mu_k}.$$
 (B.47)

このとき、各 j について $L(\mu_j)=f(\mu_j)$ である.ここで L は、 $0 \le K \le J-1$ の時(f が J-1 次以下の多項式)のときは厳密に L=f になる 8 ことに注意せよ.

したがって、関数 $f(\mu) - L(\mu)$ は

- $0 \le K \le J 1$ の時, 0 である.
- $J \leq K \leq 2J-1$ の時, $\mu=\mu_j$ を零点とする K 次多項式である. μ_j は J 次多項式 $\tilde{P}_J(\mu)$ の零点であることを思い出すと,f-L は $\tilde{P}_J(\mu)$ で割り切れるので,ある K-J 次多項式 $S(\mu)$ を用いて,

$$f(\mu) - L(\mu) = \tilde{P}_J(\mu)S(\mu) \tag{B.48}$$

と書くことができる.

 $f(\mu) - L(\mu)$ を μ について -1 から 1 まで積分する. $J \leq K \leq 2J - 1$ の時につい

 $^{^8}$ このことはL-f が J-1 次以下の多項式であること, J 個の零点 μ_i を持つことから明らか.

ては Legendre 函数の直交性より, $\tilde{P}_J(\mu)S(\mu)$ の積分は零である. したがって,

$$\int_{-1}^{1} f(\mu) d\mu = \int_{-1}^{1} L(\mu) d\mu$$

$$= \sum_{j=1}^{J} f(\mu_{j}) \int_{-1}^{1} \frac{\prod_{k=1}^{J} (\mu - \mu_{k})}{(\mu - \mu_{j}) \prod_{k=1, k \neq j}^{J} (\mu_{j} - \mu_{k})} d\mu$$

$$= \sum_{j=1}^{J} f(\mu_{j}) \int_{-1}^{1} \frac{\tilde{P}_{J}(\mu)}{(\mu - \mu_{j}) \tilde{P}'_{J}(\mu_{j})} d\mu$$

$$= 2 \sum_{j=1}^{J} f(\mu_{j}) w_{j} \tag{B.49}$$

ここで、証明すべき式の P_J は規格化されていて、上の式の \tilde{P}_J は規格化されていないのにもかかわらず同じ w_j が使われているが、 \tilde{P}_J と P_J の規格化定数は同じなので consistent である.

$$\underline{\text{STEP 2}} \quad w_j = \frac{1}{2} \int_{-1}^1 \frac{\tilde{P}_J(\mu)}{(\mu - \mu_i) \tilde{P}_J'(\mu_i)} d\mu$$
 の漸化式を用いた変形

漸化式 (岩波の Lgendre 関数・陪関数の従う漸化式) において m=0 とした式

$$(n+1)\tilde{P}_{n+1}(\mu) = (2n+1)\mu\tilde{P}_n(\mu) - n\tilde{P}_{n-1}(\mu) \quad (n=0,1,2,\cdots)$$
 (B.50)

より.

$$(n+1) \begin{vmatrix} \tilde{P}_{n+1}(x) & \tilde{P}_{n}(x) \\ \tilde{P}_{n+1}(y) & \tilde{P}_{n}(y) \end{vmatrix} = \begin{vmatrix} (2n+1)x\tilde{P}_{n}(x) - n\tilde{P}_{n-1}(x) & \tilde{P}_{n}(x) \\ (2n+1)y\tilde{P}_{n}(y) - n\tilde{P}_{n-1}(y) & \tilde{P}_{n}(y) \end{vmatrix}$$

$$= (2n+1)(x-y)\tilde{P}_{n}(x)\tilde{P}_{n}(y)$$

$$+ n(-\tilde{P}_{n-1}(x)\tilde{P}_{n}(y) + \tilde{P}_{n-1}(y)\tilde{P}_{n}(x))$$

$$= (2n+1)(x-y)\tilde{P}_{n}(x)\tilde{P}_{n}(y) + n \begin{vmatrix} \tilde{P}_{n}(x) & \tilde{P}_{n-1}(x) \\ \tilde{P}_{n}(y) & \tilde{P}_{n-1}(y) \end{vmatrix}$$
(B.51)

となる. この式を $n=0,1,\cdots,n-1$ について加えると,

$$n \begin{vmatrix} \tilde{P}_n(x) & \tilde{P}_{n-1}(x) \\ \tilde{P}_n(y) & \tilde{P}_{n-1}(y) \end{vmatrix} = \sum_{k=0}^{n-1} (2k+1)(x-y)\tilde{P}_k(x)\tilde{P}_k(y)$$
(B.52)

が成り立つ. ここで $n=J, x=\mu, y=\mu_j$ とすると $\tilde{P}_J(\mu_j)=0$ より,

$$J\tilde{P}_{J}(\mu)\tilde{P}_{J-1}(\mu_{j}) = \sum_{k=0}^{J-1} (2k+1)(\mu-\mu_{j})\tilde{P}_{k}(\mu)\tilde{P}_{k}(\mu_{j}).$$
 (B.53)

よって,

$$\frac{\tilde{P}_J(\mu)}{\mu - \mu_j} = \frac{\sum_{k=0}^{J-1} (2k+1)\tilde{P}_k(\mu)\tilde{P}_k(\mu_j)}{J\tilde{P}_{J-1}(\mu_j)}$$
(B.54)

である. したがって,

$$w_{j} = \frac{1}{2} \int_{-1}^{1} \frac{\tilde{P}_{J}(\mu)}{(\mu - \mu_{j})\tilde{P}'_{J}(\mu_{j})} d\mu$$

$$= \frac{1}{2J\tilde{P}_{J-1}(\mu_{j})\tilde{P}'_{J}(\mu_{j})} \sum_{k=0}^{J-1} (2k+1)\tilde{P}_{k}(\mu_{j}) \int_{-1}^{1} \tilde{P}_{k}(\mu) d\mu$$

$$= \frac{1}{J\tilde{P}_{J-1}(\mu_{j})\tilde{P}'_{J}(\mu_{j})}$$
(B.55)

である. ただし, (B.55) における積分は, k=0 の時のみ 0 でない値を持つこと, および $\tilde{P}_0=1$ を使った. さらに, 漸化式

$$(1 - \mu^2) \frac{\partial \tilde{P}_n}{\partial \mu} = n \tilde{P}_{n-1}(\mu) - n \mu \tilde{P}_n(\mu)$$
 (B.56)

で $n=J, \mu=\mu_j$ とする. $\tilde{P}_J(\mu_j)=0$ より

$$w_j = \frac{1 - \mu_j^2}{(J\tilde{P}_{J-1}(\mu_j))^2} \tag{B.57}$$

となる.

STEP3 \tilde{P}_n の規格化

 P_n ϵ

$$\int_{-1}^{1} P_n(\mu) P'_n(\mu) d\mu = 2$$
 (B.58)

になるように規格化する. $ilde{P}_{J-1}=\sqrt{rac{1}{2(\mathrm{J}-1)+1}}P_{J-1}$ より,

$$w_j = \frac{1 - \mu_j^2}{(J\sqrt{\frac{1}{2J-1}}P_{J-1}(\mu_j))^2} = \frac{(2J-1)(1 - \mu_j^2)}{(JP_{J-1}(\mu_j))^2}$$
(B.59)

となる.

まとめ

以上より

$$\int_{-1}^{1} f(\mu)d\mu = 2\sum_{j=1}^{J} f(\mu_j)w_j,$$
(B.60)

$$w_j = \frac{(2J-1)(1-\mu_j^2)}{(JP_{J-1}(\mu_j))^2}$$
 (B.61)

B.5 球面調和函数の離散的直交関係

ここでは球面直交関数の離散的直交関係である選点直交性を示す.

$$\sum_{j=1}^{J} \sum_{i=1}^{I} P_n^m(\mu_j) P_{n'}^{m'}(\mu_j) \exp(im\lambda_i) \exp(-im'\lambda_i) w_j = I \delta_{nn'} \delta_{mm'}$$
 (B.62)

ここで、i,j,m,m',n,n',I,J,M,N(m) は整数で、 $1\leq i\leq I,1\leq j\leq J,0\leq |m|,|m'|\leq M,|m|\leq n\leq N,|m'|\leq n'\leq N$ であり、 $M\leq \left[\frac{I}{2}\right],N(m)\leq J-1$ を満たす。また、 w_j は Gauss 荷重、 $\lambda_i=\frac{2\pi(i-1)}{I},\,\mu_j$ は $P_J(\mu)$ の零点である。[] は それを越えない最大の整数を表す。これは、有限な直交多項式系において成り立つ 選点直交性と呼ばれる性質である 9 .

この式を証明する. Legendre 函数・陪函数の定義・(連続系での)直交性, Gauss の台形公式, Legendre 函数の零点を用いた多項式の積分評価を既知とすると,

$$\sum_{j=1}^{J} \sum_{i=1}^{I} P_n^m(\mu_j) P_{n'}^{m'}(\mu_j) \exp(im\lambda_i) \exp(-im'\lambda_i) w_j$$

$$= I \sum_{j=1}^{J} P_n^m(\mu_j) P_{n'}^{m'}(\mu_j) w_j \delta_{mm'}.$$
(B.63)

⁹別の離散的直交関係については後で述べる.

ここで Gauss の台形公式を使った. 更に変形すると

$$\sum_{j=1}^{J} \sum_{i=1}^{I} P_n^m(\mu_j) P_{n'}^{m'}(\mu_j) \exp(im\lambda_i) \exp(-im'\lambda_i) w_j$$

$$= I \sum_{j=1}^{J} P_n^m(\mu_j) P_{n'}^m(\mu_j) w_j$$

$$= \frac{I}{2} \int_{-1}^{1} P_n^m(\mu) P_{n'}^m(\mu) d\mu.$$
(B.64)

ここで、Gauss-Legendre の公式を使った。更に、連続系の Legendre 函数・陪函数の直交性より

$$\sum_{j=1}^{J} \sum_{i=1}^{I} P_n^m(\mu_j) P_{n'}^{m'}(\mu_j) \exp(im\lambda_i) \exp(-im'\lambda_i) w_j$$

$$= I\delta_{nn'}\delta_{mm'}$$
(B.65)

が得られる. 以上により、離散化した球面調和関数の選点直交性が示された.

余談ではあるが、直交多項式系においては離散的な直交関係としては選点直交性のほかに次のような直交関係も知られている 10 . $\{f_k(\mu)\}(k=0,1,2,\cdots)$ を [a,b] で定義された重み $w(\mu)$, 規格化定数 λ_k の直交多項式 $\left(\int_a^b f_k(\mu)f_{k'}(\mu)w(\mu)d\mu=\lambda_k\delta_{kk'}\right)$ とする. $\mu_j,\mu_{j'}(1\leq j,j'\leq J)$ を $f_J(\mu)$ の零点, $w_j=w(\mu_j)$ とすれば、選点直交性

$$\sum_{j=0}^{J-1} f_k(\mu_j) f_{k'}(\mu_j) w_j = \lambda_k \delta_{kk'}$$
 (B.66)

のほかに.

$$\sum_{k=0}^{J-1} \frac{f_k(\mu_j) f_k(\mu_{j'})}{\lambda_k} = \frac{1}{w_j} \delta_{jj'}$$
 (B.67)

が成り立つ.

実際, Legendre 函数 $\{P_n\}(n=0,1,2,\cdots,J-1)$ についてはこの関係が成り立つ. すなわち, w_i を GCM で用いている Gauss 荷重として,

$$\sum_{n=0}^{J-1} P_n(\mu_j) P_n(\mu_{j'}) = \frac{1}{w_j} \delta_{jj'}$$
 (B.68)

¹⁰以下については、森、1984 「数値解析法」が詳しい.

である. しかし、GCM では Legendre 函数 P_J の零点でのみ値を計算することと、波数切断の関係とから、Legendre 陪函数 $\{P_n^m\}(n=|m|,|m|+1,|m|+2,\cdots,N)$ の離散的直交関係は意味がない¹¹. Legendre 函数の直交関係についても、波数切断により P_n は $n=0,1,2,\cdots,N< J-1$ しか扱わないので¹² 実際には意味がない.

三角関数についても同様な離散的直交関係がある. 選点直交性

$$\sum_{i=0}^{I-1} \exp(im\lambda_i) \exp(-im'\lambda_i) = I\delta_{mm'}$$
(B.69)

のほかに.

$$\sum_{m=-\frac{I}{2}+1}^{\frac{I}{2}} \exp(im\lambda_i) \exp(-im\lambda_{i'}) = I\delta_{ii'}$$
(B.70)

も成り立つ. (ただし, I は偶数で I=2M. I が奇数の場合には, I=2M+1 として, m についての和は $-\frac{I-1}{2}\sim\frac{I-1}{2}$ でとる.)しかし GCM では, 波数切断により |m| の最大値 M は $\frac{I}{3}$ 以下の値なのでやはり意味がない 13 .

B.6 スペクトルの係数と格子点値とのやり取り

ここではスペクトルの係数と格子点値との変換法について述べる. 実際の GCM 計算において必要になるのは

- スペクトルの係数と格子点値との値のやり取り
- 速度の格子点値の発散 D ・ 渦度 (のスペクトルの係数への変換
- 速度ポテンシャル χ , 流線関数 ψ (もとは 発散, 渦度) のスペクトルの係数 から速度の格子点値の作成

である.

 $^{^{11}}$ そもそも,ここで述べている直交関係は f_k ($k=0,1,2,\cdots,K-1$) が k 次多項式であるような直交多項式系において成り立つものである.Legendre 陪函数は m が奇数のときは多項式でないし,m が偶数であっても P_n^m は n 次多項式であって,n-m 次多項式ではない.その場合にも直交多項式の議論を拡張してここで述べている直交関係を使えるのか,については未調査である.

 $^{^{12}{}m T42}$ ならば, m=0 で J=63, N=42, ${
m R21}$ ならば, m=0 で J=63, N=21, である.

 $^{^{13}\}mathrm{T}42$ ならば I=128 に対して M=42 , $\mathrm{R}21$ ならば I=64 に対して M=21 である.

B.6.1 スペクトルの係数と格子点値との値のやり取り

スカラー関数 $A(\lambda,\varphi)$ の格子点値とスペクトルの係数とのやり取りは以下のとおりである。ただし、格子点値は A_{ij} $(i=1,2,\cdots,I,\ j=1,2,\cdots,J)$ 、スペクトルの係数は \tilde{A}_n^m $(m=-M,-M+1,\cdots,M,\ n=|m|,|m|+1,\cdots,N(m))$ とする.

$$A_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{A}_n^m Y_n^m (\lambda_i, \varphi_j), \tag{B.71}$$

$$\tilde{A}_{n}^{m} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} A_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j},$$
(B.72)

$$w_j = \frac{(2J-1)(1-\sin^2\varphi_j)}{(JP_{J-1}(\sin\varphi_j))^2}.$$
 (B.73)

以後この文書では簡単のために、 $\sum_{m=-M}^{M}\sum_{n=|m|}^{N}$ を $\sum_{m,n}$ と、 $\sum_{i=1}^{I}\sum_{j=1}^{J}$ を $\sum_{i,j}$ と表記する.

B.6.2 スペクトルの係数と格子点値との値のやり取り~東西微分編

まず,

$$g \equiv \frac{\partial f}{\partial \lambda}$$

を考える.

東西微分(λ微分)は次式で評価する.

$$g_{ij} \equiv \left[\frac{\partial}{\partial \lambda} \left(\sum_{m,n} \tilde{f}_n^m Y_n^m(\lambda, \varphi) \right) \right]_{ij}.$$
 (B.74)

すなわち,

$$g_{ij} = \sum_{m,n} im \tilde{f}_n^m Y_n^m(\lambda_i, \varphi_j)$$
 (B.75)

である. 変換公式 (B.72) で A を g とみなしたものと (B.75) とを比較すれば明らかに 14 ,

$$\tilde{g}_n^m = im\tilde{f}_n^m. \tag{B.76}$$

 $\overline{ \ \ }^{14}$ より正確には, $(g_{ij}=)\sum_{m,n}im ilde{f}_n^mY_n^m=\sum_{m,n} ilde{g}_n^mY_n^m$ の両辺に左から $\sum_{i,j}Y_n^{m*}(\lambda_i,arphi_j)w_j$ を演算すれば, $im' ilde{f}_{n'}^{m'}= ilde{g}_{n'}^{m'}$ として得られる.

よって,

$$\tilde{g}_n^m = \frac{1}{I} \sum_{i,j} im f_{ij} Y_n^{m*}(\lambda_i, \varphi_j) w_j$$
(B.77)

である.

次に、

$$h \equiv \frac{g}{r \cos^2 \varphi} = \frac{1}{r \cos^2 \varphi} \frac{\partial f}{\partial \lambda} \quad \left[= \frac{\partial}{\partial x} \left(\frac{f}{\cos \varphi} \right) \right]$$

とする. f と h とのやり取りを考える. (B.74) より明らかに,

$$h_{ij} = \frac{1}{r \cos^2 \varphi_i} g_{ij}$$

$$h_{ij} = \frac{1}{r \cos^2 \varphi_j} \sum_{m,n} im \tilde{f}_n^m Y_n^m(\lambda_i, \varphi_j).$$

一方, (B.76) より

$$\tilde{h}_{n}^{m} = \left[\frac{\partial}{\partial \lambda} \left(\frac{f}{r \cos^{2} \varphi}\right)\right]_{n}^{m} = im \left(\frac{f}{r \cos^{2} \varphi}\right)_{n}^{m}$$

$$= \frac{1}{I} \sum_{i,j} im \left(\frac{f}{r \cos^{2} \varphi}\right)_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}$$

$$= \frac{1}{I} \sum_{i,j} im f_{ij} Y_{n}^{m*}(\lambda_{i} \varphi_{j}) \frac{w_{j}}{r \cos^{2} \varphi_{j}}.$$
(B.78)

B.6.3 スペクトルの係数と格子点値との値のやり取り~南北微分編

まず,

$$p \equiv \frac{\partial f}{\partial \varphi}$$

を考える.

南北微分 (φ 微分) は次式で評価する.

$$p_{ij} \equiv \left[\frac{\partial}{\partial \varphi} \left(\sum_{m,n} \tilde{f}_n^m Y_n^m \right) \right]_{ij}. \tag{B.79}$$

すなわち,

$$p_{ij} = \sum_{m,n} \tilde{f}_n^m \left. \frac{dP_n^m}{d\varphi} \right|_j \exp(im\lambda_i)$$
 (B.80)

である. よって.

$$\begin{split} p_n^m &= \frac{1}{I} \sum_{i,j} p_{ij} Y_n^{m*} w_j \\ &= \frac{1}{I} \sum_{i,j} \left(\sum_{m',n'} \tilde{f}_{n'}^{m'} \frac{dP_{n'}^{m'}}{d\varphi} \Big|_j \exp(im'\lambda_i) \right) P_n^m(\varphi_j) \exp(-im\lambda_i) w_j \\ &= -\frac{1}{I} \sum_{i,j} \left(\sum_{m',n'} \tilde{f}_{n'}^{m'} P_{n'}^{m'}(\varphi_j) \exp(im'\lambda_i) \right) \frac{dP_n^m}{d\varphi} \Big|_j \exp(-im\lambda_i) w_j \\ &= -\frac{1}{I} \sum_{i,j} f_{ij} \frac{dP_n^m}{d\varphi} \Big|_j \exp(-im\lambda_i) w_j \end{split}$$

となる. ここで、2行目から3行目の等号では、

$$\sum_{i=1}^{I} \sum_{j=1}^{J} f_{n'}^{m'} P_n^m(\varphi_j) \exp(im\lambda_i) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_j \exp(-im'\lambda_i) w_j$$

$$= -\sum_{i=1}^{I} \sum_{j=1}^{J} f_{n'}^{m'} \left. \frac{dP_n^m}{d\varphi} \right|_j \exp(-im\lambda_i) P_{n'}^{m'}(\varphi_j) \exp(im'\lambda_i) w_j$$
(B.81)

を用いた¹⁵.

次に,

$$q \equiv \cos^2 \varphi \frac{\partial f}{\partial \varphi} = \cos^2 \varphi \ p$$

とする.

(B.79) より明らかに,

$$q_{ij} = \cos^2 \varphi_j \sum_{m,n} \tilde{f}_n^m \left. \frac{dP_n^m}{d\varphi} \right|_j \exp(im\lambda_i)$$

15この証明は以下のとおりである.

$$\begin{split} & \sum_{i} \sum_{j} f_{n'}^{m'} P_{n}^{m}(\varphi_{j}) \exp(im\lambda_{i}) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_{j} \exp(-im'\lambda_{i}) w_{j} \\ &= I \sum_{j} f_{n'}^{m'} P_{n}^{m}(\varphi_{j}) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_{j} w_{j} \delta_{mm'} = I \sum_{j} f_{n'}^{m} P_{n}^{m}(\varphi_{j}) \left. \frac{dP_{n'}^{m}}{d\varphi} \right|_{j} w_{j} \delta_{mm'} \\ &= \frac{I}{2} \int_{-1}^{1} f_{n'}^{m} P_{n}^{m}(\varphi) \frac{dP_{n'}^{m}}{d\varphi} d\varphi \delta_{mm'}. \end{split}$$

である. 一方,

$$\begin{split} \tilde{q}_{n}^{m} &= \frac{1}{I} \sum_{i,j} q_{ij} Y_{n}^{m*} w_{j} \\ &= \frac{1}{I} \sum_{i,j} \left(\cos^{2} \varphi_{j} \sum_{m',n'} \tilde{f}_{n'}^{m'} \frac{dP_{n'}^{m'}}{d\varphi} \Big|_{j} \exp(im'\lambda_{i}) \right) P_{n}^{m}(\varphi_{j}) \exp(-im\lambda_{i}) w_{j} \\ &= -\frac{1}{I} \sum_{i,j} \left(\sum_{m',n'} \tilde{f}_{n'}^{m'} P_{n'}^{m'}(\varphi_{j}) \exp(im'\lambda_{i}) \right) \\ &\times \frac{d}{d\varphi} \left(\cos^{2} \varphi P_{n}^{m} \right) \Big|_{j} \exp(-im\lambda_{i}) w_{j} \\ &= -\frac{1}{I} \sum_{i,j} f_{ij} \frac{d}{d\varphi} \left(\cos^{2} \varphi P_{n}^{m} \right) \Big|_{j} \exp(-im\lambda_{i}) w_{j} \end{split}$$

が成り立つ. ここで, 2 行目から 3 行目において,

$$\sum_{i=1}^{I} \sum_{j=1}^{J} f_{n'}^{m'} \cos^{2} \varphi_{j} P_{n}^{m}(\varphi_{j}) \exp(im\lambda_{i}) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_{j} \exp(-im'\lambda_{i}) w_{j}$$

$$= -\sum_{i=1}^{I} \sum_{j=1}^{J} f_{n'}^{m'} \left. \frac{d}{d\varphi} \left(\cos^{2} \varphi P_{n}^{m} \right) \right|_{j} \exp(-im\lambda_{i}) P_{n'}^{m'}(\varphi_{j}) \exp(im'\lambda_{i}) w_{j}$$

を用いた16.

$\mathbf{B.6.4}$ χ,ψ のスペクトルの係数から速度の格子点値への変換

ここでは χ_n^m,ψ_n^m から u_{ij},v_{ij} を求める方法を記す.

ここで、部分積分すると

$$\sum_{i} \sum_{j} f_{n'}^{m'} P_{n}^{m}(\varphi_{j}) \exp(im\lambda_{i}) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_{j} \exp(-im'\lambda_{i}) w_{j}$$

$$= -\frac{I}{2} \int_{-1}^{1} f_{n'}^{m} P_{n'}^{m}(\varphi) \frac{dP_{n}^{m}}{d\varphi} d\varphi \delta_{mm'}$$

$$= -I \sum_{j} f_{n'}^{m} P_{n'}^{m}(\varphi_{j}) \left. \frac{dP_{n}^{m}}{d\varphi} \right|_{j} w_{j} \delta_{mm'}$$

$$= -\sum_{i} \sum_{j} f_{n'}^{m'} P_{n'}^{m'}(\varphi_{j}) \exp(im'\lambda_{i}) \left. \frac{dP_{n}^{m}}{d\varphi} \right|_{j} \exp(-im\lambda_{i}) w_{j}.$$

¹⁶この証明は (B.81) の証明と同様である.

まず,

$$u = -\frac{1}{r}\frac{\partial \psi}{\partial \varphi} + \frac{1}{r\cos\varphi}\frac{\partial \chi}{\partial \lambda}$$
 (B.82)

より,

$$u_{ij} = \sum_{m,n} \left(-\frac{1}{r} \tilde{\psi}_n^m \left. \frac{dP_n^m}{d\varphi} \right|_j + \frac{1}{r \cos \varphi_j} im \tilde{\chi}_n^m P_n^m(\sin \varphi_j) \right) \exp(im\lambda_i).$$
 (B.83)

である. 同様に、

$$v = \frac{1}{r\cos\varphi} \frac{\partial\psi}{\partial\lambda} + \frac{1}{r} \frac{\partial\chi}{\partial\varphi}$$
 (B.84)

より.

$$v_{ij} = \sum_{m,n} \left(\frac{1}{r \cos \varphi_j} im \tilde{\psi}_n^m P_n^m (\sin \varphi_j) + \frac{1}{r} \tilde{\chi}_n^m \left. \frac{dP_n^m}{d\varphi} \right|_j \right) \exp(im\lambda_i).$$
 (B.85)

である.

B.7 スペクトルの係数同士の関係

ここではスペクトルの係数同士の便利な公式を挙げておく. $g=rac{\partial f}{\partial \lambda}$ の時

$$\tilde{g}_n^m = im\tilde{f}_n^m. \tag{B.86}$$

 $h = \nabla_H^2 f$ の時

$$\tilde{h}_n^m = -\frac{n(n+1)}{r^2} \tilde{f}_n^m.$$
 (B.87)

(B.86) については「スペクトルの係数と格子点値とのやり取り」に証明を示した. ここでは、(B.87) について証明しておく.

微分評価の定義より、

$$h_{ij} = \left(\nabla_H^2 \sum_{m,n} \tilde{f}_n^m Y_n^m \right) \bigg|_{ij} = -\sum_{m,n} \frac{n(n+1)}{r^2} \left. \tilde{f}_n^m Y_n^m \right|_{ij}$$

64

である. ところで,

$$h_{ij} = \sum_{m,n} \tilde{h}_n^m Y_n^m \Big|_{ij}$$

である. この 2 つの式の右辺に左から $\sum_{i,j} Y_{n'}^{m'*}|_{ij}$ を演算して比較すると,

$$\tilde{f}_{n'}^{m'} = -\frac{n(n+1)}{r^2} \tilde{h}_{n'}^{m'}$$

を得る.

B.8 波数切断

GCM では、物理量を球面調和函数 $P_n^m(\sin\varphi)\exp(im\lambda)$ で展開したり波数空間で計算するときに、計算資源の都合上、ある一定波数以下の波数のみを考慮して計算する。そのことを波数切断するという 17 . 以下ではまず、切断の基礎知識として切断の仕方・流儀を述べ、ついで、切断における事情を述べた上で切断波数の決め方を記す。

B.8.1 波数切断の仕方

波数切断の仕方については、東西波数 (m), 南北波数 (n-m) のそれぞれの切断の方法にいくつかの流儀がある。一般によく用いられるものは三角形切断 (Triangle), 平行四辺形切断 (Rhomboidal:偏菱形) と呼ばれるものである。三角形切断の場合について計算する波数領域を波数平面上に書くと (B.1) のようになる。平方四辺形切断の場合は、(B.2) である。

三角形切断, 平行四辺形切断, という名称は波数平面上 ((n,m) 平面) での形状による 18 .

より一般的な切断方法は五角形切断 ((B.3)) である.

三角形切断、平行四辺形切断はそれぞれ、五角形切断において

¹⁷後述するように、現実的には波数切断を決めると同時に格子点数が決まる. すなわち、以上の理由は格子点数を大きくとれないことの理由でもある.

 $^{^{18}}$ 平方四辺形切断には, n の最大値を m の最大値の 2 倍にしないようなとり方もある. 詳しくは五角形切断に関する脚注参照.

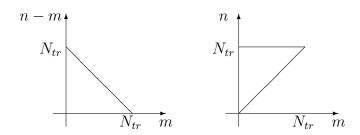


図 В.1: 三角形切断の場合の波数領域

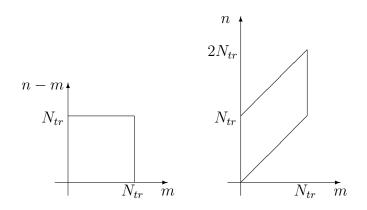


図 B.2: 平方四辺形切断の場合の波数領域

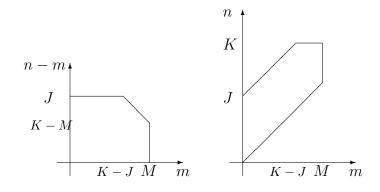


図 B.3: 五角形切断の場合の波数領域

- 三角形切断 $J = K = M = N_{tr}$
- 平行四辺形切断 $K=2N_{tr}, J=M=N_{tr}$

であるような特別な場合である19.

三角形切断と平行四辺形切断の違いについて、世の中では次のように言われている 20 .

- 三角形切断の水平分解能は、経度方向のみならず緯度方向にも一定である²¹
 . 分解能を上げてスケールの細かい波を表現できるようになった場合を考える。物理的にスケールの小さい波には指向性がないことと、水平分解能に方向依存性がないこととは調和的である。
 - また、このことは、ある三角形波数切断した球面調和函数により表現される 球面上の分布は極の位置を変えても同じ三角形波数切断した球面調和函数に より正確に表現されることの言い替えでもある。
- 平行四辺形切断の場合、各東西波数について同じだけの南北波数をとれる.

B.8.2 切断波数の決め方

ここでは切断波数と南北格子点数の決め方について記す.これらは切断の仕方を決めた後に、使用する計算資源がネックになって決まる.その際、FFT の仕様、aliasingの回避、という2つの数値的な事情を考慮した上で決める必要がある.

FFT の仕様の事情というのは、話は簡単で、東西方向に「格子 \Leftrightarrow スペクトル」変換するために用いる FFT が効率よく動くための格子点数・波数がある 22 ことである.

一方, aliasing に関する事情は複雑である. ここで扱っているスペクトルモデルでは, 格子点でのみ値を計算している. いわゆるスペクトルを使うのは, 単に格子点上での水平微分項の評価をする時のみである. その意味で, 「微分の評価にのみス

 $^{^{19}}$ 単に K=J+M であるものも平方四辺形切断と呼ばれる. だが, 例えば $\mathbf{R}21$ と呼ばれるものは, K=42, J=M=21 のものである.

²⁰気象庁予報部, 1982 の p.47 より.

²¹分解能が緯度方向に変化することについては、平行四辺形切断に限らず、三角形切断以外のどれでも起こる。

 $^{^{22}}$ コード依存性がある. 通常, 2 のべき乗が好ましいとされる. コードによっては, 2,3,5 のべき乗の積でもよいものもある.

ペクトルを用いるグリッドモデル」と言ってもよい. そのように受け止めると, 格子点値を"正しく"計算することを目指し, また, 考慮する波数は厳密にスペクトルの係数と格子との変換を行なうことのできる波数, すなわち変換において情報の落ちないだけの波数をとらねばならないように思える. ところが実際には, スペクトルモデル的な配慮 — ある波数以下についてのみ正しく計算し, それ以上の波数については計算しない — により切断波数・格子点数が決められている. また, 後述する理由により情報は (非線形 aliasing のことを考えずとも) 必ず落ちてしまうのである²³.

さて、以下では aliasing に関する事情を具体的に述べながら、切断波数に対する格子点数の決め方を記そう。 球面上に連続分布している物理量を球面調和函数で展開する。 ある波数 M,N(m) 以下(例えば、T42 ならば M=42,N=42)については線形項・非線形項の両方について厳密に計算できるように I,J を決めることを目指す。

M,N を仮に固定したとして、まずは線形項について切断波数以下のスペクトルの係数のわかっている物理量 A を格子点値に変換しさらにスペクトルの係数に正しくもどすことを考える. A は $-M \le m \le M, \ |m| \le n \le N(m)$ の m,n については \tilde{A}_n^m がわかっているとする. 格子点値は、 $1 \le i \le I, 1 \le j \le J$ について

$$A_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{A}_{n}^{m} P_{n}^{m} (\sin \varphi_{j}) \exp(im\lambda_{i})$$
 (B.88)

で与えられる。これらの格子点値から逆に $\tilde{A}_n^m(-M \le m \le M, \ |m| \le n \le N)$ を計算する。離散化した系での積分を Gauss の公式,Gauss-Legendre の公式で評価すれば、

$$\tilde{A}_n^m = \frac{1}{I} \sum_{i=1}^I \sum_{j=1}^J A_{ij} P_n^m(\sin \varphi_j) \exp(-im\lambda_i) w_j$$
 (B.89)

²³実際の GCM では格子点値からスペクトルに変換する際に情報は落ちている. したがって, 格子 - スペクトル - 格子という変換を行なうと元にはもどらない.

例えば T42 の場合、自由度は $1+(2\times 1+1)+\cdots+(2\times 42+1)=43^2=1849$ に対して格子点数は $128\times 64=8192$ である。 R21 の場合も、自由度は $(2\times 21+1)\times (21+1)=946$ に対して、格子点数は $64\times 64=4096$ である。 すなわち、3/4 以上の情報は格子点値からスペクトルに変換するときに落ちている。

工夫すれば情報が落ちないうまい方法があるかも知れないが、今のところ見つけていないし多分見つからない.

もちろん、スペクトル - 格子 - スペクトルという変換では元にもどる(ように決めている).

である. ここで, w_i は φ_i における重みである. A_{ij} の定義を代入すれば,

$$\tilde{A}_{n}^{m} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} \left(\sum_{m'=-M}^{M} \sum_{n'=|m'|}^{N} \tilde{A}_{n'}^{m'} P_{n'}^{m'} (\sin \varphi_{j}) \exp(im'\lambda) \right) P_{n}^{m} (\sin \varphi_{j}) \exp(-im\lambda_{i}) w_{j}$$

$$= \frac{1}{I} \sum_{m'=-M}^{M} \sum_{n'=|m'|}^{N} \tilde{A}_{n'}^{m'} \sum_{i=1}^{I} \exp(i(m'-m)\lambda) \sum_{j=1}^{J} P_{n}^{m} (\sin \varphi_{j}) P_{n'}^{m'} (\sin \varphi_{j}) w_{j}$$
(B.90)

となる. この計算が \tilde{A}_n^m を正しく評価している (すなわち元にもどる) ための I,J の条件は, -M < m < M, |m| < n < N を満たす m,n について

$$\sum_{i=1}^{I} \exp(i(m'-m)\lambda) = I\delta_{mm'}, \tag{B.91}$$

$$\sum_{j=1}^{J} P_n^m(\sin \varphi_j) P_{n'}^m(\sin \varphi_j) w_j = \delta_{nn'}$$
 (B.92)

が成り立つことである。三角関数の和による評価が正しいための条件は、ここに登場する波数 |m'-m| が最大で 2M の値をとるので、Gauss の公式の適用条件より、格子点数 I が $I\geq 2M+1$ を満たすことである。Legendre 函数の積の和による評価が正しいための条件は、ここに登場する計算が n+n' 次の多項式 24 の評価であることから、Gauss - Legendre の公式の適用条件より、格子点数 J が $2J-1\geq \max[n+n']=2\max[N]$ を満たすことである。ここで、 $\max[n+n']$ は n+n' の最大値を、 $\max[N]$ は N の最大値を表す。

ちなみに、格子点値からスペクトルの係数に変換し格子点値にもどすという立場からすれば、この Gauss-Legendre の公式の適用条件というのが情報を落とさずには済まない理由である 25 . このことを以下に述べる. 情報を落とさずに格子点値をスペクトルの係数に変換し格子点値にもどすには、あらゆる東西波数について南北方向の格子点数 J と同じだけの個数の Legendre 函数が必要である. 東西波数 m の場合、登場する Legendre 陪函数の n は $n=|m|,|m|+1,\cdots,|m|+J-1$ である. $P_n^m P_{n'}^m$ の次数は n+n' であるから、最大で 2J+2|m|-2 である. これが 2J-1

 $^{^{24}}$ ここで、三角関数の和が $I\delta_{mm'}$ となることを用いた.一般には (m,m' の偶奇が一致しない場合には) $P_n^m P_{n'}^{m'}$ は多項式にならない.

 $^{^{25}}$ Gauss の公式の適用条件と情報欠落との関係についてコメントしておく. 格子点数 I が奇数の場合には,スペクトルで同じ情報量を持つためには波数 $\frac{I-1}{2}$ までを考慮すればよいので,情報は欠落しないことは明らかである.一方,I が偶数の場合には,情報は欠落させないためには波数 $\frac{I}{2}$ が必要であるが,この波数は Gauss の公式の適用条件を満たさない.しかしこの場合にも,(私は根拠を調べていないが,少なくとも) 経験的には FFT および 逆 FFT によって格子 - スペクトル - 格子変換によって情報が落ちないことが知られている.

以下になるのは m=0 の時のみである. $m\neq 0$ の場合は高次の Legendre 函数は計算してはならない. つまり情報を落とさざるをえない 26 .

改めて M,N を固定するという立場にもどって、切断波数以下のスペクトルの係数のわかっている物理量 B,C の積からそれらの格子点値を用いて B と C との積 (非線形項) A のスペクトルの係数を正しく求めるための I,J の条件を考える.

$$A = BC, (B.93)$$

$$B = \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \left(\tilde{B}_{n}^{m} \exp(im\lambda) \right) P_{n}^{m} (\sin \varphi), \tag{B.94}$$

$$C = \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \left(\tilde{C}_{n}^{m} \exp(im\lambda) \right) P_{n}^{m} (\sin \varphi)$$
 (B.95)

なる物理量 A,B,C があるとする 27 . B,C の $-M \le m \le M$, $|m| \le n \le N$ におけるスペクトルの係数 \tilde{B}_n^m , \tilde{C}_n^m を用いて A のスペクトルの係数 \tilde{A}_n^m を $0 \le m \le M$, $|m| \le n \le N$ については正しく計算することを考える.

$$\tilde{A}_{n}^{m} \equiv (\widetilde{BC})_{n}^{m} \\
= \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} B_{ij} C_{ij} P_{n}^{m} (\sin \varphi_{j}) \exp(-im\lambda_{i}) w_{j} \\
= \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} \left(\sum_{m'=-M}^{M} \sum_{n'=|m'|}^{N} \widetilde{B}_{n'}^{m'} \exp(im'\lambda_{i}) P_{n'}^{m'} (\sin \varphi_{j}) \right) \\
\times \left(\sum_{m''=-M}^{M} \sum_{n''=|m'|}^{N} \widetilde{C}_{n''}^{m''} \exp(im''\lambda_{i}) P_{n''}^{m''} (\sin \varphi_{j}) \right) P_{n}^{m} (\sin \varphi_{j}) \exp(-im\lambda_{i}) w_{j} \\
= \frac{1}{I} \sum_{m'=-M}^{M} \sum_{n'=|m'|}^{N} \sum_{m''=-M}^{M} \sum_{n''=|m''|}^{N} \widetilde{B}_{n'}^{m'} \widetilde{C}_{n''}^{m''} \\
\times \sum_{i=1}^{I} \exp(i(m'+m''-m)\lambda_{i}) \sum_{j=1}^{J} P_{n'}^{m'} (\sin \varphi_{j}) P_{n''}^{m''} (\sin \varphi_{j}) P_{n}^{m} (\sin \varphi_{j}) w_{j}. \tag{B.96}$$

この計算が \tilde{A}_n^m を $0 \le m \le M$, $|m| \le n \le N$ について正しく評価しているため a0 つ事情により、非線形項の場合を考えてさらに著しく落とすことが必要になることが次節からなかる

 $[\]tilde{B}_n^m = \tilde{B}_n^{m*}, etc.$ となっている.

の, I,J の条件を線形項の場合と同様に考えると, 格子点数 I が $I \geq 3M+1$ を, 格子点数 J が $2J-1 \geq \max[n+n'+n''] = 3\max[N]$ を満たすことである. ここで, $\max[n+n'+n'']$ は n+n'+n'' の最大値を, $\max[N]$ は N の最大値を表す.

再び格子点値からスペクトルの係数に変換し格子点値にもどすという立場からすれば、これらの I,J に関する条件から、南北成分のみならず、東西成分についても変換によって情報が落ちてしまうことがわかる。

これまでに述べた M,N を固定したときに格子点数 I,J がとらねばならない個数について、線形項・非線形項の 2 つの場合のうち条件が厳しいのは、明らかに非線形項の場合である。この条件以下の格子点数しかとらない場合には、aliasing をおこすことになる。

以上, FFT, aliasing という2つの事情を考えて格子点数と切断波数とは同時に決められる. 具体的手順は以下のとおりである.

- 1. 波数切断の仕方を決める.
- 2. FFT のかけやすい数を選ぶ. それを東西格子点数 I とする.
- 3. 東西方向の波数の最大値 M を $M=\left[rac{I-1}{3}
 ight]$ にする. ただし $[\]$ はそれを越えない最大の整数を表す記号である.
- 4. 最大全波数 N_{\max} を決める. 三角形切断ならば $N_{\max}=M$, 平行四辺形切断ならば $N_{\max}=2M$ である.
- 5. 南北方向の格子点数 J を $J \ge \frac{3N_{\max}+1}{2}$ を満たす数に選ぶ. (dcpam5-primitive では偶数でなくてはならない.)

例えば, T42 の場合には M=42, N=42, 東西格子点数 I が 128, 南北格子点数 J が 64 である. R21 の場合には M=21, N=42, 東西格子点数 I が 64, 南北格子点数 J が 64 である.

参考までに、線形モデルの場合について決め方を示しておく.

- 1. 波数切断の仕方を決める.
- 2. FFT のかけやすい数を選ぶ、それを東西格子点数 / とする.

- 3. 東西方向の波数の最大値 M を $M=\left[\dfrac{I}{2}\right]$ にする. ただし $[\]$ はそれを越えない最大の整数を表す記号である 28 .
- 4. 最大全波数 N_{\max} を決める. 三角形切断ならば $N_{\max}=M$, 平行四辺形切断ならば $N_{\max}=2M$ である.
- 5. 南北方向の格子点数 J を $J \geq \frac{2N_{\max}+1}{2}$ を満たす数に選ぶ.

例えば、三角形切断の場合には、I=128 とすると、M=64、N=64、J=65 となる。 つまり T64 では I=128、J=65 である。 平方四辺形切断の場合には、I=64 とすると、M=32、N=64、 $J\geq 65$ となる。 つまり R32 では I=64、J=65 でよい 29 .

B.9 スペクトルモデルと差分モデル

世の中の多くの GCM の離散化の方法としては、鉛直方向については必ずレベルと称する差分による離散化を行なうが、水平方向については、差分する方法(この方法を用いるモデルをグリッドモデルという)と球面調和函数で展開してその係数の時間変化を計算する方法(力学過程において³⁰ この方法を用いるモデルをスペクトルモデルという)とが用いられる。その二つの方法については一長一短がある。ここでは双方の特徴について列挙しておく³¹.

- スペクトルモデルには水平空間差分の誤差がない。これが位相の遅れがない ことに通じる(らしい)。
- もっとも, グリッド間隔 1.875 度(波数 63 相当)以上では, 格子点モデルでの差分誤差も十分小さくなり、ほぼ等しい性能といえる.
- 極は特異点であり、単純には扱えない³².スペクトルモデルではうまく関数

 $^{^{28}}$ ここで, I が偶数のときについては ${
m Gauss}$ の公式の適用条件を越えて最大波数 $\frac{I}{2}$ まで計算できるという知識を用いた.

²⁹これらの場合でも,南北方向の細かい情報は格子 - スペクトル - 格子変換によって落ちていることに注意せよ.

³⁰ adjustment 等の意味をなど考えると、特に物理過程においては、格子点で考える方が物理的に 当然であるように思う。そのためであろうか、スペクトルモデルである東大版 GCM でも物理過程 を格子点で計算している。他のスペクトルモデルについてもそうであるかどうかは未調査。

³¹出典は、スペクトル法による数値予報 (その原理と実際) (1.6)

 $^{^{32}}$ 問題点その 1. グリッドモデルでは緯度経度図で等間隔に格子点をとると、極でも $^{
m CFL}$ を満たすようにするために、時間差分を細かくしなければならない. 他は未調査.

系を選ぶことで困難を回避できる. 格子点法では数値的な技巧が必要である(らしい).

- 保存量を作ることは出力結果の解釈に使いやすいという物理的な理由と、数値的な発散をおさえやすいという数値的な理由とにより奨励される. 格子点モデルの場合、技巧を用いることで保存を維持できる. スペクトルモデルの場合、さほどの技巧を用いることなく保存を維持できる.
- 格子点モデルには非線形不安定がある(aliasing).
- スペクトルモデルの方が、空間微分を含まないだけプログラムが簡単になる。
- スペクトル法はグリッド法よりも境界条件の点で柔軟でない。
- スペクトルモデルはグリッドモデルに比べて水蒸気等の局地的な現象の表現には適さないといわれる。もっとも、グリッドのあらい格子点モデルではスペクトルモデルに比べてさして優れているとはいえない。
- スペクトルモデルでは一点の影響が(本来は影響が及ばない)遠く離れた点にも与えられてしまう。
- FFT を用いると、少なくともある程度の解像度までは、スペクトルモデルの 方が格子点モデルよりも速い(らしい).

ちなみに、dcpam5-primitive はスペクトルモデルに分類される.

B.10 参考文献

気象庁予報部, 1982: スペクトル法による数値予報 (その原理と実際). 気象庁, 111pp.

森口, 宇田川, 一松編 ,1956 : 岩波数学公式 I . 岩波書店, 318pp.

森口, 宇田川, 一松編 ,1960 : 岩波数学公式 III . 岩波書店, 310pp.

一松 信, 1982:数值解析. 朝倉書店, 163pp.

森 正武, 1984:数值解析法. 朝倉書店, 202pp.

寺沢寛一, 1983: 自然科学者のための数学概論(増訂版). 岩波書店, 711pp.

付録C

使用上の注意とライセンス 規定

CREDITS¹ を参照ください.

 $^{{}^{1}} http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/CREDITS$